Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Rapid design optimisation of microwave structures through automated tuning space mapping

Rapid design optimisation of microwave structures through automated tuning space mapping

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Tuning space mapping (TSM) is one of the latest developments in space mapping technology. TSM algorithms offer a remarkably fast design optimisation with satisfactory results obtained after one or two iterations, which amounts to just a few electromagnetic simulations of the optimised microwave structure. The TSM algorithms (as exemplified by ‘Type-1’ tuning) could be simply implemented manually. The approach may require interaction between various electromagnetic-based and circuit models, as well as handling different sets of design variables and control parameters. As a result, certain TSM algorithms (especially so-called ‘Type-0’ tuning) may be tedious, thus, error-prone to implement. Here, we present a fully automated tuning space mapping implementation that exploits the functionality of our user-friendly space mapping software, the SMF system. The operation and performance of our new implementation is illustrated through the design of a box-section Chebyshev bandpass filter and a capacitively coupled dual-behaviour resonator filter.

References

    1. 1)
    2. 2)
      • Swanson, D.G., Wenzel, R.J.: `Fast analysis and optimization of combline filters using FEM', IEEE MTT-S IMS Digest, July 2001, Boston, MA, p. 1159–1162.
    3. 3)
    4. 4)
      • Q.S. Cheng , J.W. Bandler , S. Koziel . Space mapping design framework exploiting tuning elements. IEEE Trans. Microwave Theory and Tech. , 1 , 136 - 144
    5. 5)
      • J.E. Dennis , V. Torczon , N.M. Alexandrov , M.Y. Hussaini . (1997) Managing approximation models in optimization, Multidisciplinary design optimization.
    6. 6)
      • Rautio, J.C.: `RF design closure – companion modeling and tuning methods', IEEE MTT IMS Workshop: Microwave Component Design using Space Mapping Technology, 2006, San Francisco, CA.
    7. 7)
    8. 8)
      • L. Zhang , J. Xu , M.C.E. Yagoub , R. Ding , Q.-J. Zhang . Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling. IEEE Trans. Microw. Theory Tech. , 9 , 2752 - 2767
    9. 9)
    10. 10)
      • N.V. Queipo , R.T. Haftka , W. Shyy , T. Goel , R. Vaidynathan , P.K. Tucker . Surrogate-based analysis and optimization. Prog. Aerosp. Sci. , 1 , 1 - 28
    11. 11)
      • S.J. Leary , A. Bhaskar , A.J. Keane . A knowledge-based approach to response surface modeling in multifidelity optimization. Glob. Optim. , 3 , 297 - 319
    12. 12)
    13. 13)
    14. 14)
      • S.J. Leary , A. Bhaskar , A.J. Keane . A constraint mapping approach to the structural optimization of an expensive model using surrogates. Optim. Eng. , 4 , 385 - 398
    15. 15)
      • Sonnet Software, Inc. emTM: Version 12.54, 100 Elwood Davis Road, North Syracuse, NY 13212, USA, 2009.
    16. 16)
    17. 17)
    18. 18)
      • J. Zhu , J.W. Bandler , N.K. Nikolova , S. Koziel . Antenna optimization through space mapping. IEEE Trans. Antennas Propag. , 3 , 651 - 658
    19. 19)
      • Koziel, S., Bandler, J.W.: `Coarse and surrogate model assessment for engineering design optimization with space mapping', IEEE MTT-S Int. Microwave Symp. on Digest, 2007, Honolulu, HI, p. 107–110.
    20. 20)
    21. 21)
      • C.-K. Liao , P.-L. Chi , C.-Y. Chang . Microstrip realization of generalized Chebyshev filters with box-like coupling schemes. IEEE Trans. Microw. Theory Tech. , 1 , 147 - 153
    22. 22)
      • D. Echeverria , P.W. Hemker . Space mapping and defect correction. CMAM Int. Math. J. Comput. Methods Appl. Math. , 2 , 107 - 136
    23. 23)
    24. 24)
      • S. Koziel , J.W. Bandler , K. Madsen . Quality assessment of coarse models and surrogates for space mapping optimization. Optim. Eng. , 4 , 375 - 391
    25. 25)
      • J.W. Bandler , R.M. Biernacki , S.H. Chen , P.A. Grobelny , R.H. Hemmers . Space mapping technique for electromagnetic optimization. IEEE Trans. Microw. Theory Tech. , 12 , 536 - 544
    26. 26)
    27. 27)
      • S. Shin , S. Kanamaluru . Diplexer design using EM and circuit simulation techniques. IEEE Microw. Mag. , 2 , 77 - 82
    28. 28)
      • A. Bhargava . Designing circuits using an EM/circuit co-simulation technique. RF Des.
    29. 29)
      • Meng, J., Koziel, S., Bandler, J.W., Bakr, M.H., Cheng, Q.S.: `Tuning space mapping: a novel technique for engineering design optimization', IEEE MTT-S Int. Microwave Symp. on Digest, June 2008, Atlanta, GA, p. 991–994.
    30. 30)
    31. 31)
      • Gano, S.E., Renaud, J.E., Sanders, B.: `Variable fidelity optimization using a kriging based scaling function', Proc. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf., 2004, Albany, New York.
    32. 32)
      • Koziel, S., Bandler, J.W.: `Automated tuning space mapping implementation for rapid design optimization of microwave structures', Int. Rev. of Progress in Applied Computational Electromagnetics, ACES 2009, 8–12 March 2009, Monterey, CA, p. 138–143.
    33. 33)
    34. 34)
    35. 35)
      • Bandler, J.W., Cheng, Q.S., Gebre-Mariam, D.H., Madsen, K., Pedersen, F., Søndergaard, J.: `EM-based surrogate modeling and design exploiting implicit, frequency and output space mappings', IEEE MTT-S IMS Digest, June 2003, Philadelphia, PA, p. 1003–1006.
    36. 36)
      • Rautio, J.C.: `Perfectly calibrated internal ports in EM analysis of planar circuits', IEEE MTT-S Int. Microwave Symp. on Digest, June 2008, Atlanta, GA, p. 1373–1376.
    37. 37)
    38. 38)
      • Koziel, S., Bandler, J.W., Mohamed, A.S., Madsen, K.: `Enhanced surrogate models for statistical design exploiting space mapping technology', IEEE MTT-S Int. Microwave Symp. on Digest, 2005, Long Beach, CA, p. 1609–1612.
    39. 39)
      • Agilent Technologies, Agilent ADS, Version 2008, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799, 2008.
    40. 40)
      • T.W. Simpson , J. Peplinski , P.N. Koch , J.K. Allen . Metamodels for computer-based engineering design: survey and recommendations. Eng. Comput. , 2 , 129 - 150
    41. 41)
      • Rizzoli, V., Costanzo, A., Masotti, D., Spadoni, P.: `Circuit-level nonlinear/electromagnetic co-simulation of an entire microwave link', IEEE MTT-S Int. Microwave Symp. on Digest, June 2005, Long Beach, CA, p. 813–816.
    42. 42)
      • Sercu, J., Demuynck, F.: `Electromagnetic/Circuit co-optimization of lumped component and physical layout parameters using generalized layout components', IEEE MTT-S Int. Microwave Symp. on Digest, June 2002, Seattle, WA, p. 2073–2076.
    43. 43)
      • Redhe, M., Nilsson, L.: `Using space mapping and surrogate models to optimize vehicle crashworthiness design', 9thAIAA/ISSMO Multidisciplinary Analysis and Optimization Symp., September 2002, Atlanta, GA, Paper AIAA-2002-5536.
    44. 44)
    45. 45)
      • Zhang, L., Xu, J.J., Yagoub, M., Ding, R.T., Zhang, Q.J.: `Neuro-space mapping technique for nonlinear device modeling and large signal simulation', IEEE MTT-S Int. Microwave Symp. on Digest, June 2003, Philadelphia, PA, p. 173–176.
    46. 46)
      • Koziel, S., Bandler, J.W.: `SMF: a user-friendly software engine for space-mapping-based engineering design optimization', Int. Symp. on Signals, Systems and Electronics, URSI ISSSE 2007, 2007, Montreal, Canada, p. 157–160.
    47. 47)
      • S. Koziel , J. Meng , J.W. Bandler , M.H. Bakr , Q.S. Cheng . Accelerated microwave design optimization with tuning space mapping. IEEE Trans. Microw. Theory Tech. , 2 , 383 - 394
    48. 48)
    49. 49)
    50. 50)
    51. 51)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2009.0618
Loading

Related content

content/journals/10.1049/iet-map.2009.0618
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address