Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Substrate-integrated waveguide circuit analysis and optimisation

Substrate-integrated waveguide circuit analysis and optimisation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This work proposes a technique for the analysis of electrically large substrate-integrated waveguide (SIW) circuits. For this purpose, the circuit is first decomposed into a number of two or multi-port sub-circuits. A commercial full-wave solver is then used to determine the scattering parameters of these sub-circuits with respect to their reference planes, which are also chosen on their connecting SIWs. Using this type of waveguide as the reference waveguide of the sub-circuits enables us to analyse a large variety of SIW circuits. A library of scattering parameters of mostly utilised sub-circuits or components, such as Y-junctions, bends etc., is generated. The overall scattering parameters of the circuit are then evaluated using a proper connection of the scattering parameters of the SIW sub-circuits. The paper also discusses the conditions under which the proposed analysis provides the desired accuracy. With the help of this method, we have analysed and optimised electrically large SIW circuits, such as a four-way power splitter.

References

    1. 1)
      • L. Li , K. Wu , L. Zhu . Numerical TRL calibration technique for parameter extraction of planar integrated discontinuities in a deterministic MoM algorithm. IEEE Microw. Wirel. Compon. Lett. , 12 , 883 - 885
    2. 2)
    3. 3)
      • Y.J. Cheng , W. Hong , K. Wu . millimetre-wave monopulse antenna incorporating substrate integrated waveguide phase shifter. IET Microw. Antennas Propag. , 1 , 48 - 52
    4. 4)
      • R.R. Mansour , R.H. Macphie . An improved transmission matrix formulation of cascaded discontinuities and its application to E-plane circuits. IEEE Trans. Microw. Theory Tech. , 12 , 1490 - 1498
    5. 5)
    6. 6)
      • T.S. Chu , T. Itoh . Generalized scattering matrix method for analysis of cascaded and offset microstrip step discontinuities. IEEE Trans. Microw. Theory Tech. , 280 - 284
    7. 7)
    8. 8)
      • B.L.A. Van Thielen , G.A.E. Vandenbosch . Method for the calculation of mutual coupling between discontinuities in planar circuits. IEEE Trans. Microw. Theory Tech. , 155 - 164
    9. 9)
      • A. Suntives , R. Abhari . Design and characterization of the EBG wave-guide based interconnects. IEEE Trans. Adv. Packag. , 2 , 163 - 170
    10. 10)
      • C.A. Hoer . Choosing line lengths for calibrating network analyzers. IEEE Trans. Microw. Theory Tech. , 1 , 76 - 78
    11. 11)
      • R. Araneo . Extraction of broad-band passive lumped equivalent circuits of microwave discontinuities. IEEE Trans. Microw. Theory Tech. , 1 , 339 - 401
    12. 12)
      • I. Timmins , K.L. Wu . An efficient systematic approach to model extraction for passive microwave circuits. IEEE Trans. Microw. Theory Tech. , 9 , 1565 - 1573
    13. 13)
      • P. Mark Buff , J. Nath , M.B. Steer . Origin of the half-wavelength errors in microwave measurements using through–line calibrations. IEEE Trans. Microw. Theory Tech. , 5 , 1610 - 1615
    14. 14)
    15. 15)
    16. 16)
      • A. Ferrero , U. Pisani , K.J. Kerwin . A new implementation of a multiport automatic network analyzer. IEEE Trans. Microw. Theory Tech. , 2078 - 2085
    17. 17)
      • L. Li , K. Wu . Numerical through-resistor (TR) calibration technique for modeling of microwave integrated circuits. IEEE Microw. Wirel. Compon. Lett. , 4 , 485 - 487
    18. 18)
    19. 19)
      • B.L.A. Van Thielen , G.A.E. Vandenbosch . Method for the acceleration of transmission-line coupling calculations. IEEE Trans. Microw. Theory Tech. , 1531 - 1536
    20. 20)
      • Wu, K., Deslandes, D., Cassivi, Y.: `The substrate integrated circuits—a new concept for high-frequency electronics and optoelectronics', Proc. Sixth Int. Conf. on Telecommun. Modern Sat., 2003, p. PIII–PX.
    21. 21)
      • L. Lin , K. Wu . Multiport through-resistor (TR) numerical calibration. IEEE Microw. Wirel. Compon. Lett. , 12 , 815 - 817
    22. 22)
    23. 23)
      • F. Xu , K. Wu , W. Hong . Domain decomposition FDTD algorithm combined with numerical TL calibration technique and its application in parameter extraction of substrate integrated circuits. IEEE Trans. Microw. Theory Tech. , 1 , 329 - 338
    24. 24)
      • W. D'Orazio , K. Wu , J. Helszajn . A substrate integrated waveguide degree-2 circulator. IEEE Microw. Wirel. Compon. Lett. , 7 , 207 - 209
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2009.0515
Loading

Related content

content/journals/10.1049/iet-map.2009.0515
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address