Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Non-coherent improved-gain diversity reception of binary orthogonal signals in Nakagami-q (Hoyt) mobile channels

Non-coherent improved-gain diversity reception of binary orthogonal signals in Nakagami-q (Hoyt) mobile channels

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A novel non-coherent receiver with diversity reception for binary orthogonal signals in non-identical Nakagami-q (Hoyt) fading channels (channels having arbitrary average fading powers and arbitrary fading parameters) is proposed. A closed-form expression for the average bit error probability of the proposed receiver is derived, which is given in terms of elementary functions, and can be readily evaluated numerically. In addition, the results clarify that the proposed receiver does not incur non-coherent combining loss, and at the same time, lower bounds the performance of the conventional non-coherent equal-gain combining (NC-EGC) receiver. Simulation results are provided to validate the mathematical analysis.

References

    1. 1)
      • B. Chytil . The distribution of amplitude scintillation and the conversion of scintillation indices. J. Atmos.-Terr. Phys. , 1175 - 1177
    2. 2)
      • J. Cavers . An analysis of pilot symbol assisted modulation for Rayleigh fading channels. IEEE Trans. Veh. Technol. , 4 , 686 - 693
    3. 3)
      • U. Charash . Reception through Nakagami fading multipath channels with random Delays. IEEE Trans. Commun. , 4 , 657 - 670
    4. 4)
      • M.K. Simon , M.S. Alouini . (2005) Digital communication over fading channels.
    5. 5)
      • Q.T. Zhang . A note on the estimation of Nakagami-m fading parameter. IEEE Commun. Lett. , 6 , 237 - 238
    6. 6)
      • D.G. Brennan . Linear diversity combining techniques. IEEE Proc. , 2 , 331 - 356
    7. 7)
      • M. Gans . The effect of Gaussian error in maximal ratio combiners. IEEE Trans. Commun. Technol. , 4 , 492 - 500
    8. 8)
      • R.M. Radaydeh , M.M. Matalgah . Improved-performance noncoherent weighted-coefficients diversity combiner for DPSK and NC-FSK signals in nonidentical Nakagami-m fading channels. IEEE Commun. Lett. , 4 , 281 - 283
    9. 9)
      • L.J. Greenstein , D.G. Michelson , V. Erceg . Moment-based estimation of the Ricean K-factor. IEEE Commun. Lett. , 6 , 175 - 176
    10. 10)
      • I.S. Gradshteyn , I.M. Ryzhik . (1994) Tables of inegrals, series, and products.
    11. 11)
      • Y. Chen , C. Tellambura . Performance analysis of maximum ratio transmission with imperfect channel estimation. IEEE Commun. Lett. , 4 , 322 - 324
    12. 12)
      • A. Annamalai , C. Tellambura . A moment-generating function (MGF) derivative based unified analysis of incoherent diversity reception of M-ary orthogonal signals over independent and correlated fading channels. Int. J. Wirel. Inf. Netw. , 1 , 41 - 56
    13. 13)
      • J. Gaeddert , A. Annamalai . Further results on Nakagami-m parameter estimation. IEEE Commun. Lett. , 1 , 22 - 24
    14. 14)
      • A.A. Abu-Dayya , N.C. Beaulieu . Micro- and macro-diversity NCFSK (DPSK) on shadowed Nakagami fading channels. IEEE Trans. Commun. , 2693 - 2702
    15. 15)
      • P. Bello , B.D. Nelin . Predetection diversity combining with selectively fading channels. IRE Trans. Commun. Syst. , 1 , 32 - 42
    16. 16)
      • A.M. Monk , L.B. Miltein . Open-loop power control error in a land mobile satellite system. IEEE J. Sel. Areas Commun. , 2 , 205 - 212
    17. 17)
      • Wyne, S., Molisch, A.F., Almers, P., Eriksson, G.: `Statistical evaluation of outdoor-to-indoor office MIMO measurements at 5.2 GHz', Proc. IEEE Veh. Technol. Conf, May–June 2005, p. 146–150.
    18. 18)
      • M. Shwartz , W.R. Bennett , S. Stein . (1966) Communication systems and techniques.
    19. 19)
      • Nikolai, D., Kammeyer, K.D.: `Noncoherent RAKE receiver with optimum weighted combining and improved closed-loop power control', Proc. IEEE Int. Symp. Spread Spectrum Techniques and Applications (ISSSTA), September 1996, p. 239–243.
    20. 20)
      • M. Nakagami . (1960) The m-distribution, a general formula of intensity distribution of rapid fading, Statistical methods in radio wave propagation.
    21. 21)
      • Y. Chen , N.C. Beaulieu . Estimators using noisy channel samples for fading distribution parameters. IEEE Trans. Commun. , 8 , 1274 - 1277
    22. 22)
      • Ko, Y.-C., Alouini, M.-S.: `Estimation of the local mean power over Nakagami fading channels', Proc. IEEE Int. Symp. Personal, Indoor and Mobile Commun, September–October 2001, p. 107–112.
    23. 23)
      • J.C. Hancock , W.C. Lindsey . Optimum performance of self adaptive systems operating through a Rayleigh-fading medium. IEEE Trans. Commun. Syst. , 4 , 443 - 453
    24. 24)
      • G.L. Stuber . (1996) Principles of mobile communication.
    25. 25)
      • D. Wong , D.C. Cox . Estimating local mean signal power level in a Rayleigh fading environment. IEEE Trans. Veh. Technol. , 3 , 956 - 959
    26. 26)
      • A. Ramesh , A. Chockalingam , L.B. Milstein . SNR estimation in Nakagami-m fading with diversity combining and its application to turbo decoding. IEEE Trans. Commun. , 11 , 1719 - 1724
    27. 27)
      • J.G. Proakis . (1995) Digital communications.
    28. 28)
      • M.K. Simon , M.-S. Alouini . Average bit-error probability performance for optimum diversity combining of noncoherent FSK over Rayleigh fading channels. IEEE Trans. Commun. , 4 , 566 - 569
    29. 29)
      • Mehrnia, A., Hashemi, H.: `Mobile satellite propagation channel, Part II–a new model and its performance', Proc. IEEE Veh. Technol. Conf. (VTC99), 1999, Amsterdam, The Netherlands, p. 2780–2784.
    30. 30)
      • C. Tepedelenlioglu , A. Abdi , G.B. Giannakis . The Ricean K factor: estimation and performance analysis. IEEE Trans. Wirel. Commun. , 4 , 799 - 810
    31. 31)
      • G. Turin . On optimal diversity reception. IEEE Trans. Inf. Theory , 3 , 154 - 166
    32. 32)
      • R.S. Hoyt . Probability functions for the modulus and angle of the normal complexvariate. Bell Syst. Tech. J. , 318 - 359
    33. 33)
      • Ma, Y., Schober, R., Pasupathy, S.: `Effect of imperfect channel estimation on MRC diversity in fading channels', Proc. IEEE Int. Conf. Communications (ICC), June 2004, p. 3163–3167.
    34. 34)
      • M.M. Perisky . Statistical estimation of mean signal strength in a Rayleigh-fading environment. IEEE Trans. Veh. Technol. , 4 , 123 - 129
    35. 35)
      • Y.-C. Ko , M.-S. Alouini . Estimation of Nakagami-m fading channel parameters with application to optimized transmitter diversity systems. IEEE Trans. Wirel. Commun. , 2 , 250 - 259
    36. 36)
      • M.K. Simon , S.H. Hinedi , W.C. Lindsey . (1995) Digital communication techniques: signal design and detection.
    37. 37)
      • A.J. Viterbi . (1995) CDMA: principles of spread spectrum communication.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com_20070032
Loading

Related content

content/journals/10.1049/iet-com_20070032
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address