Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Fast method for precoding and decoding of distributive multi-input multi-output channels in relay-based decode-and-forward cooperative wireless networks

Fast method for precoding and decoding of distributive multi-input multi-output channels in relay-based decode-and-forward cooperative wireless networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

It is well-known that the performance of the relay-based decode-and-forward (DF) cooperative networks outperforms the performance of the amplify-and-forward cooperative networks. However, this performance improvement is accomplished at the expense of adding more signal processing complexity (precoding/decoding) at each relay node. In this study, the authors tackle this signal processing complexity issue by proposing a Jacket-based fast method for reducing the precoding/decoding complexity in terms of time computation. Jacket transforms have shown to find applications in signal processing and coding theory. Jacket transforms are defined to be n×n matrices A=(ajk) over a field ℱ with the property AA=nIn, where A is the transpose matrix of the element-wise inverse of A, that is, A=(akj−1), which generalise Hadamard transforms and centre weighted Hadamard transforms. In particular, exploiting the Jacket transform properties, the authors propose a new eigenvalue decomposition (EVD) method with application in precoding and decoding of distributive multi-input multi-output channels in relay-based DF cooperative wireless networks in which the transmission is based on using single-symbol decodable space-time block codes. The authors show that the proposed Jacket-based method of EVD has significant reduction in its computational time as compared to the conventional-based EVD method. Performance in terms of computational time reduction is evaluated quantitatively through mathematical analysis and numerical results.

References

    1. 1)
      • J. Hou , M.H. Lee . Construction of dual OVSF codes with lower correlations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. , 11 , 3363 - 3367
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • J. Hou , M.H. Lee . Enhancing data throughput and lower correlations quasi orthogonal functions for 3G CDMA systems. Int. J. Commun. Syst. , 915 - 933
    6. 6)
      • R.A. Horn , C.R. Johnson . (1991) Topics in matrix analysis.
    7. 7)
      • Smith, P.J., Shafi, M.: `On a Gaussian approximation to the capacity of wireless MIMO system', Proc. Int. Conf. Communications, 28 April–2 May 2002, New York, NY, p. 406–410.
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • E. Biglieri , R. Calderbank , T. Constantinides , A. Goldsmith , A. Paulraj , H.V. Poor . (2007) MIMO wireless communications.
    12. 12)
      • M.H. Lee . (2006) Jacket matrices.
    13. 13)
      • Yarlagadda , R.K. Rao , H.E. Hershey . (1997) Hadamard matrix analysis and synthesis : with applications to communicationsand signal/image processing.
    14. 14)
      • M.H. Lee , X.D. Zhang . Fast block center weighted Hadamard transform. IEEE Trans. Circuits Syst.-I , 10 , 2741 - 2745
    15. 15)
      • Z. Chen , M.H. Lee , G. Zeng . Fast cocyclic Jacket transform. IEEE Trans. Signal Process. , 5 , 2143 - 2148
    16. 16)
      • M.H. Lee , K. Finlayson . A simple element inverse Jacket transform coding. IEEE Signal Process. Lett. , 3 , 325 - 328
    17. 17)
      • J.N. Lanemanand , G.W. Wornell . Distributed space-time-coded protocols for exploiting cooperative diversity. IEEE Trans. Inf. Theory , 10 , 2415 - 2425
    18. 18)
    19. 19)
      • Lee, M.H., Song, W., Zhang, X.D.: `A note on eigenvalue decomposition on Jacket transform', Proc. IET Communications Conf. Wireless, Mobile, and Sensor Networks 2007 (CCWMSN07), 12–14 December 2007, Shanghai, China.
    20. 20)
      • K.W. Schmidt , E.T.H. Wang . The weight of Hadamard matrices. J. Comb. Theory , 257 - 263
    21. 21)
      • R.J. Turyn . (1970) Complex Hadamard matrices, in: combinatorial structures and their applications.
    22. 22)
      • M.H. Lee , N.L. Manev , X.D. Zhang . Jacket transform eigenvalue decomposition. Appl. Math. Comput. , 854 - 864
    23. 23)
      • Sreedhar, D., Chockalingam, A., Rajan, B.S.: `Single-symbol ML distributed STBCs for partially-coherent cooperative networks', Proc. 2008 IEEE Int. Conf. Communications (ICC 2008), May 2008.
    24. 24)
      • http://en.wikipedia.org/wiki/Category:Matrices, http://en.wikipedia.org/wiki/Jacket-Matrices.
    25. 25)
      • W.K. Pratt , J. Kane , H.C. Andrews . Hadamard transform image coding. Proc. IEEE , 1 , 58 - 68
    26. 26)
      • M.H. Lee . The center weighted Hadamard transform. IEEE Trans. Circuits Syst. Analog Digit. Signal Process. , 9 , 1247 - 1249
    27. 27)
      • E. Telatar . Capacity of multi-antenna gaussian channels. Eur. Trans. Telecommun. , 585 - 595
    28. 28)
      • A.T. Butson . Generalized Hadamard matrices. Proc. Am. Math. Soc. , 894 - 890
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • H. Jafarkhani . (2005) Space-time coding: theory and practice.
    33. 33)
      • G.J. Foschini , M.J. Gans . On the limits of wireless communications in a fading environment when using multiple antennas. Wirel. Pers. Commmun. , 311 - 335
    34. 34)
    35. 35)
    36. 36)
      • Zhu, Y., Kam, P.Y., Xin, Y.: `A new approach to the capacity distribution of MIMO Rayleigh fading channels', Proc. IEEE GLOBECOM 2006, 27 November–1 December 2006, p. 1–5.
    37. 37)
      • F.J. MacWilliams , N.J.A. Sloane . (1977) The theory of error correcting codes.
    38. 38)
      • Zeng, G., Lee, M.H.: `Fast block Jacket transform based on Pauli matrices', Proc. IEEE Int. Conf. Communications, 24–28 June 2007, Glasgow, Scotland, UK.
    39. 39)
    40. 40)
    41. 41)
      • N. Ahmed , K.R. Rao . (1975) Orthogonal transforms for digital signal processing.
    42. 42)
      • S.R. Lee , M.H. Lee . On the reverse Jacket matrix for weighted Hadamard transform. IEEE Trans. Circuits Syst.-II Analog Digit. Signal Process. , 3 , 436 - 441
    43. 43)
      • A.V. Geramita , J. Seberry . (1979) Orthogonal designs: quadratic forms and Hadamard matrices.
    44. 44)
      • M.H. Lee , J. Hou . Fast block inverse Jacket transform. IEEE Signal Process. Lett. , 8 , 461 - 464
    45. 45)
      • K. Finlayson , M.H. Lee , J. Seberry , M. Yamada . Jacket matrices constructed from Hadamard matrix and generalized Hadamard matrices. Aust. J. Comb. , 1 , 83 - 88
    46. 46)
      • J. Hou , M.H. Lee . Matrices analysis of quasi-orthogonal space-time blcok codes. IEEE Commun. Lett. , 8 , 385 - 387
    47. 47)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-com.2008.0712
Loading

Related content

content/journals/10.1049/iet-com.2008.0712
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address