Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Equivalence of the Rayleigh solution and the extended-boundary-condition solution for scattering problems

Equivalence of the Rayleigh solution and the extended-boundary-condition solution for scattering problems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
Electronics Letters — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Methods based on the Rayleigh hypothesis (e.g. the point-matching method) for numerically solving wave-diffraction problems are shown to be equivalent to the exact extended-boundary-condition method. It is concluded that the Rayleigh hypothesis is exact, although, in general, it is necessary to interpret it in the generalised function sense.

References

    1. 1)
      • M.G. Andreason . Scattering from parallel metallic cylinders with arbitrary cross sections. IEEE Trans. , 746 - 754
    2. 2)
      • K.K. Mei , J. van Bladel . Scattering by perfectly conducting rectangular cylinders. IEEE Trans. , 185 - 192
    3. 3)
      • R. Petit , M. Cadilhac . Sur la diffraction d'une onde plane par une réseau infiniment conducteur. CR Acad. Sci. , 468 - 471
    4. 4)
      • C.R. Mullin , R. Sandburg , C.O. Velline . A numerical technique for the determination of scattering cross sections of infinite cylinders of arbitrary geometrical cross section. IEEE Trans. , 141 - 149
    5. 5)
      • Waterman, P.C.: `Electromagnetic scattering by conducting spheriods', MTR-391, Mitre Corporation technical report, 1967.
    6. 6)
      • P.C. Waterman . Matrix formulation of electromagnetic scattering. Proc. Inst. Elect. Electron. Engrs. , 805 - 812
    7. 7)
      • R. Petit . Diffraction d'une onde plane monochromatique par unréseau pénodique infiniment conductor. CR Acad. Sci. , 2018 - 2021
    8. 8)
      • N.N. Govorun . The numerical solution of an integral equation of the first kind for the current density in an antenna body of revolution. Zh. Vychislit. Mat. Fiz. , 664 - 679
    9. 9)
      • Lord Rayleigh . (1945) , The theory of sound.
    10. 10)
      • R.H.T. Bates . The point-matching method for interior and exterior two-dimensional boundary problems. IEEE Trans. , 185 - 187
    11. 11)
      • G.N. Watson . (1944) , A treatise on the theory of Bessel functions.
    12. 12)
      • M.J. Lighthill . (1958) , Fourier analysis and generalised functions.
http://iet.metastore.ingenta.com/content/journals/10.1049/el_19690210
Loading

Related content

content/journals/10.1049/el_19690210
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address