Issue 2, 1992

Mechanisms of peroxide stabilization. An investigation of some reactions of hydrogen peroxide in the presence of aminophosphonic acids

Abstract

It has been established by continuous-flow studies in conjunction with EPR spectroscopy that the aminophosphonic acids 14 accelerate significantly the Fenton reaction between FeII and H2O2 in aqueous solution via complexation of the metal ion (with values of the rate constant k for the generation of the hydroxyl radical up to 2 × 105 dm3 mol–1 s–1 at room temperature). To a certain extent this behaviour parallels that of EDTA and some structurally-related aminocarboxylic acids. It is also shown that the N-oxides of the aminophosphonic acids 13 react readily with the hydroxyl radical to give long-lived nitroxides viaβ-scission of first-formed carbon-centred radicals.

Neither of these findings is believed to correspond to the major chemistry which underlies the efficacy of these ligands as peroxide stabilizers. It is suggested instead that the crucial role of these compounds depends upon their ability to stabilize the higher valence state of iron, and hence not only to encourage oxidation of FeII by O2˙ and H2O2 but also to prevent effective reduction of FeIII by O2˙, HO2˙ and H2O2. However, radical scavenging by N-oxides may be a secondary, contributory factor in this stabilizing function, especially in peroxide systems when the sequestrant is added before storage, when slow N-oxidation is to be expected.

Article information

Article type
Paper

J. Chem. Soc., Perkin Trans. 2, 1992, 153-160

Mechanisms of peroxide stabilization. An investigation of some reactions of hydrogen peroxide in the presence of aminophosphonic acids

S. Croft, B. C. Gilbert, J. R. L. Smith, J. K. Stell and W. R. Sanderson, J. Chem. Soc., Perkin Trans. 2, 1992, 153 DOI: 10.1039/P29920000153

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements