Issue 35, 2023

Tube geometry controls protein cluster conformation and stability on the endoplasmic reticulum surface

Abstract

The endoplasmic reticulum (ER), a cellular organelle that forms a cell-spanning network of tubes and sheets, is an important location of protein synthesis and folding. When the ER experiences sustained unfolded protein stress, IRE1 proteins embedded in the ER membrane activate and assemble into clusters as part of the unfolded protein response (UPR). We use kinetic Monte Carlo simulations to explore IRE1 clustering dynamics on the surface of ER tubes. While initially growing clusters are approximately round, once a cluster is sufficiently large a shorter interface length can be achieved by ‘wrapping’ around the ER tube. A wrapped cluster can grow without further interface length increases. Relative to wide tubes, narrower tubes enable cluster wrapping at smaller cluster sizes. Our simulations show that wrapped clusters on narrower tubes grow more rapidly, evaporate more slowly, and require a lower protein concentration to grow compared to equal-area round clusters on wider tubes. These results suggest that cluster wrapping, facilitated by narrower tubes, could be an important factor in the growth and stability of IRE1 clusters and thus impact the persistence of the UPR, connecting geometry to signaling behavior. This work is consistent with recent experimental observations of IRE1 clusters wrapped around narrow tubes in the ER network.

Graphical abstract: Tube geometry controls protein cluster conformation and stability on the endoplasmic reticulum surface

Supplementary files

Article information

Article type
Paper
Submitted
29 May 2023
Accepted
21 Aug 2023
First published
22 Aug 2023

Soft Matter, 2023,19, 6771-6783

Tube geometry controls protein cluster conformation and stability on the endoplasmic reticulum surface

L. T. Kischuck and A. I. Brown, Soft Matter, 2023, 19, 6771 DOI: 10.1039/D3SM00694H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements