Issue 14, 2023

Synthesis and application of polypyrrole nanofibers: a review

Abstract

State-of-the-art polypyrrole nanofiber-based nanoarchitectonics can be generally fabricated by electrospinning, interfacial polymerization and reactive template methods. Even though analogous nanofiber morphologies and nanofibrous network architectures can be obtained by these methods, the structural details and structural complexities may alter significantly as different synthesis methods are applied. For the electrospinning technique, on one hand, nanofibers can be directly obtained by spinning polypyrrole-containing dope solutions; on the other, the electrospun nanofiber mats can be used as templates to direct the nanofiber formation; a two-step fabrication process, including the electrospinning of polymer nanofiber mats and deposition of polypyrrole on the polymer nanofibers' surface, is generally employed. By tuning the electrospinning parameters, the composition, diameter, morphology, and alignment of the as-obtained electrospun nanofiber mat can be effectively controlled, which may allow the fabrication of polypyrrole nanofibers with sophisticated nanostructures and nanoarchitectures. Interfacial polymerization is capable of generating polypyrrole nanofibers without templates. It is speculated that the protonation and re-orientation of polypyrrole at the oil–water interface may decoil the polymer chains and transform them into more extended conformations, while the charged polymer chains more easily diffuse into the water phase and form a stable dispersion. Different from electrospinning, the reactive templates may drive the formation of polypyrrole nanofibers through either redox or protonation mechanisms. Nanofibers with different curvatures, compositions, and architectures can be obtained by using different types of reactive template in a simple, fast, environment-friendly and one-step manner. A wide range of applications have been demonstrated by the polypyrrole nanofiber-based nanoarchitectonics, including cell culture, tissue engineering, neural stimulation, energy storage, and organic electronics.

Graphical abstract: Synthesis and application of polypyrrole nanofibers: a review

Article information

Article type
Minireview
Submitted
04 Mar 2023
Accepted
07 Jun 2023
First published
08 Jun 2023
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2023,5, 3606-3618

Synthesis and application of polypyrrole nanofibers: a review

Y. Liu and F. Wu, Nanoscale Adv., 2023, 5, 3606 DOI: 10.1039/D3NA00138E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements