Issue 6, 2024

pH-responsive on-demand release of eugenol from metal–organic frameworks for synergistic bacterial killing

Abstract

Bacterial infections are a big challenge in clinical treatment, making it urgent to develop innovative antibacterial systems and therapies to combat bacterial infections. In this study, we developed a novel MOF-based synergistic antibacterial system (Eu@B-UiO-66/Zn) by loading a natural antibacterial substance (eugenol) with hierarchically porous MOF B-UiO-66 as a carrier and further complexing it with divalent zinc ions. Results indicate that the system achieved a controlled release of eugenol under pH responsive stimulation, with the complexation ability of eugenol and Zn2+ ions as a switch. Due to the destruction of a coordination bond between eugenol and Zn2+ ions by an acidic medium, the release of eugenol loaded in Eu@B-UiO-66/Zn reached 80% at pH 5.8, which was significantly higher than that under pH 8.0 (51%). Moreover, the inhibitory effect of Eu@B-UiO-66/Zn against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) after 24 h was 96.4% and 99.7%, respectively, owing to the synergistic antibacterial effect of eugenol and Zn2+ ions, which was significantly stronger than free eugenol and Eu@B-UiO-66. We hope that this strategy for constructing responsive MOF-based antibacterial carriers could have potential possibilities for the application of MOF materials in antibacterial fields.

Graphical abstract: pH-responsive on-demand release of eugenol from metal–organic frameworks for synergistic bacterial killing

Supplementary files

Article information

Article type
Paper
Submitted
16 Dec 2023
Accepted
02 Jan 2024
First published
17 Jan 2024

Dalton Trans., 2024,53, 2826-2832

pH-responsive on-demand release of eugenol from metal–organic frameworks for synergistic bacterial killing

J. Wang, L. Li, X. Hu, L. Zhou and J. Hu, Dalton Trans., 2024, 53, 2826 DOI: 10.1039/D3DT04216B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements