Issue 16, 2024

The smallest Schwarzite carbon with only heptagonal carbon rings

Abstract

Carbon materials with full sp2-hybridized buckling is a major challenge pervading fundamental nanoscience and nanotechnology research. Carbon atoms that are sp2 hybridized prefer to form hexagonal rings, such as in carbon nanotubes and graphene, which are low-dimensional materials. The incorporation of heptagonal, octagonal, and/or larger rings into a hexagonal sp2 carbon meshwork has been identified as a strategy for assembling three-dimensional (3D) sp2 carbon crystals, and one of the typical representatives are Schwarzite carbons, which possess a negative surface Gaussian curvature as well as unique physical properties. Herein, a 3D Schwarzite carbon consisting of only sp2-buckled heptagonal carbon rings, which is referred to as Hepta-carbon, is proposed based on first-principles calculations. Hepta-carbon is mechanically and thermodynamically stable, and energetically more favourable than experimental graphdiyne, fullerene C20 and most Schwarzite carbons under ambient conditions. Molecular dynamics simulations indicate that Hepta-carbon exhibits high-temperature thermostability up to 1500 K. Band structure and mechanical property simulations indicate that Hepta-carbon is a semi-metallic material with electron conduction and exhibits impressive mechanical properties such as high strength with quasi-isotropy, high incompressibility similar to diamonds, elastic deformation behaviour under uniaxial stress, and high ductility. Hepta-carbon presents a porous network with a low mass density of 1.84 g cm−3 and connected channels with diameters of 3.3–6.1 Å. Theoretical simulations of gas adsorption energy demonstrate that Hepta-carbon can effectively adsorb and stabilize greenhouse gases, including N2O, CO2, CH4, and SF6.

Graphical abstract: The smallest Schwarzite carbon with only heptagonal carbon rings

Article information

Article type
Paper
Submitted
22 Oct 2023
Accepted
21 Mar 2024
First published
02 Apr 2024

Phys. Chem. Chem. Phys., 2024,26, 12778-12785

The smallest Schwarzite carbon with only heptagonal carbon rings

M. Hu, J. Huang, L. Shi, J. Hua, L. Liu, J. He and J. Ding, Phys. Chem. Chem. Phys., 2024, 26, 12778 DOI: 10.1039/D3CP05131E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements