Issue 40, 2023

Magnetic field improves ozone production in an atmospheric pressure surface dielectric barrier discharge: understanding the physico-chemical mechanism behind low energy consumption

Abstract

Herein, we studied the combined effects of the magnetic field and the alternating current driven air surface dielectric barrier discharge on ozone production, and found that a 0.13 T perpendicular magnetic field introduced into the discharge area significantly enhanced the ozone generation performance with a 36–108% increase in ozone number density and 24–80% increase in ozone yield depending on discharge voltage and frequency differences. To reveal the micro physico-chemical mechanism of the influence of a magnetic field and discharge parameters of discharge voltage and frequency on ozone generation, a plasma chemical reaction network involving electron collision-chain reactions was considered. The results show that these parameters jointly influence ozone generation by affecting electron collision reactions and chain chemical reactions by changing the mean electron energy and plasma gas temperature. In this study, both the experimental results and mechanism analysis suggested that an optimal discharge parameter for ozone generation is the magnetic field assisted, low frequency, high voltage (6.5 kHz, 6.5 kV) surface dielectric barrier discharge. These insights provide guidance for optimizing the discharge parameters of the magnetic field assisted discharge to increase ozone production and reduce energy consumption.

Graphical abstract: Magnetic field improves ozone production in an atmospheric pressure surface dielectric barrier discharge: understanding the physico-chemical mechanism behind low energy consumption

Article information

Article type
Paper
Submitted
26 Jul 2023
Accepted
22 Sep 2023
First published
26 Sep 2023

Phys. Chem. Chem. Phys., 2023,25, 27427-27437

Magnetic field improves ozone production in an atmospheric pressure surface dielectric barrier discharge: understanding the physico-chemical mechanism behind low energy consumption

X. Zhou, M. Yang, H. Xiang, W. Geng and K. Liu, Phys. Chem. Chem. Phys., 2023, 25, 27427 DOI: 10.1039/D3CP03541G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements