Issue 35, 2021

p-Aminobenzoic acid protonation dynamics in an evaporating droplet by ab initio molecular dynamics

Abstract

Protonation equilibria are known to vary from the bulk to microdroplet conditions, which could induce many chemical and physical phenomena. Protonated p-aminobenzoic acid (PABA + H+) can be considered a model for probing the protonation dynamics in an evaporating droplet, as its protonation equilibrium is highly dependent on the formation conditions from solution via atmospheric pressure ionization sources. Experiments using diverse experimental techniques have shown that protic solvents allow formation of the O-protomer (PABA protonated in the carboxylic acid group) stable in the gas phase, while aprotic solvents yield the N-protomer (protonated in the amino group) that is the most stable protomer in solution. In this work, we explore the protonation equilibrium of PABA solvated by different numbers of water molecules (n = 0 to 32) using ab initio molecular dynamics. For n = 8–32, the protonation is either at the NH2 group or in the solvent network. The solvent network interacts with the carboxylic acid group, but there is no complete proton transfer to form the O-protomer. For smaller clusters, however, solvent-mediated proton transfers to the carboxylic acid were observed, both via the Grotthuss mechanism and the vehicle or shuttle mechanism (for n = 1 and 2). Thermodynamic considerations allowed a description of the origins of the kinetic trapping effect, which explains the observation of the solution structure in the gas phase. This effect likely occurs in the final evaporation steps, which are outside the droplet size range covered by previous classical molecular dynamics simulations of charged droplets. These results may be considered relevant in determining the nature of the species observed in the ubiquitous ESI based mass spectrometry analysis, and in general for droplet chemistry, explaining how protonation equilibria are drastically changed from bulk to microdroplet conditions.

Graphical abstract: p-Aminobenzoic acid protonation dynamics in an evaporating droplet by ab initio molecular dynamics

Supplementary files

Article information

Article type
Paper
Submitted
06 Apr 2021
Accepted
19 Aug 2021
First published
20 Aug 2021

Phys. Chem. Chem. Phys., 2021,23, 19659-19672

p-Aminobenzoic acid protonation dynamics in an evaporating droplet by ab initio molecular dynamics

P. R. Batista, T. C. Penna, L. C. Ducati and T. C. Correra, Phys. Chem. Chem. Phys., 2021, 23, 19659 DOI: 10.1039/D1CP01495A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements