Issue 36, 2020, Issue in Progress

Development of glycine-copper(ii) hydroxide nanoparticles with improved biosafety for sustainable plant disease management

Abstract

Cabbage black rot caused by Xanthomonas campestris pv. campestris (Xcc) leads to decrease of the production of up to 70%. Copper biocides are widely used to control this disease because of their low-cost application and broad-spectrum antimicrobial activities. Extensive spraying of traditional copper biocides would cause undesirable effects on plants and the environment. In this work, a novel copper-based microbicide was prepared by binding copper with glycine in sodium hydroxide solution (Gly-Cu(OH)2 NPs) and characterized by inductively coupled plasma atomic emission spectroscopy, high-resolution transmission electron microscopy, Fourier transformation infrared spectroscopy, and dynamic light scattering. The results showed that the prepared Gly-Cu(OH)2 NPs had a mean diameter of 240 nm with copper content more than 25.0% and their antimicrobial efficacies against Xcc were significantly better than Kocide 3000 at 400–800 mg L−1 of copper after spraying for 14 days. The phytotoxicity tests under greenhouse conditions showed that Gly-Cu(OH)2 NPs were safer to plants than Kocide 3000 and obviously promoted the growth of plants, which led to the increase of fresh weights of Chinese cabbage and tomato seedlings by 6.34% and 3.88% respectively at a concentration of 800 mg L−1 of copper. As a novel copper-based microbicide, the Gly-Cu(OH)2 NPs can improve effective utilization of copper-based bactericides and reduce phytotoxicity to plants and would be a potential alternative for sustainable plant disease management.

Graphical abstract: Development of glycine-copper(ii) hydroxide nanoparticles with improved biosafety for sustainable plant disease management

Article information

Article type
Paper
Submitted
04 Mar 2020
Accepted
21 May 2020
First published
03 Jun 2020
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2020,10, 21222-21227

Development of glycine-copper(II) hydroxide nanoparticles with improved biosafety for sustainable plant disease management

H. Dong, R. Xiong, Y. Liang, G. Tang, J. Yang, J. Tang, J. Niu, Y. Gao, Z. Zhou and Y. Cao, RSC Adv., 2020, 10, 21222 DOI: 10.1039/D0RA02050H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements