Issue 41, 2019, Issue in Progress

Observation of enhanced magnetic entropy change near room temperature in Sr-site deficient La0.67Sr0.33MnO3 manganite

Abstract

The effect of Sr-site deficiency on the structural, magnetic and magnetic entropy change of La0.67Sr0.33−yMnO3−δ (y = 0.18 and 0.27) compounds was investigated. The compounds were prepared by the conventional solid-state route and powder X-ray diffraction technique along with Rietveld refinement was carried out to confirm the structure and phase purity. Lattice parameters and unit cell volumes are found to increase with the increase in Sr-deficiency due to the electrostatic repulsion from the neighbouring oxygen ions. A mixed valence state of Mn2+/Mn3+/Mn4+ was confirmed using the X-ray photoelectron spectroscopy technique and it was observed that the change of state from Mn3+ + Mn3+ pairs to Mn2+ + Mn4+ pairs is different for both the studied compounds. A second order ferromagnetic–paramagnetic transition with an enhancement in magnetization in comparison to the pristine compound (La0.67Sr0.33MnO3) was observed due to multiple double exchange interactions. The La0.67Sr0.150.18MnO3−δ compound exhibits a magnetic entropy change (ΔSM) of 4.61 J kg−1 K−1 at 310 K, and the La0.67Sr0.060.27MnO3−δ compound exhibits a ΔSM of 4.11 J kg−1 K−1 at 276 K under a field of 50 kOe. In our previous work, we reported a large value of ΔSM but at higher temperatures, around 350 K. However, in the present case, we have achieved a near room temperature (310 K) MCE with a significant ΔSM value (4.61 J kg−1 K−1) which is larger than that reported for numerous perovskite manganites. Thus, the studied material could be a potential candidate for room temperature magnetic refrigeration applications.

Graphical abstract: Observation of enhanced magnetic entropy change near room temperature in Sr-site deficient La0.67Sr0.33MnO3 manganite

Article information

Article type
Paper
Submitted
01 Jul 2019
Accepted
24 Jul 2019
First published
30 Jul 2019
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2019,9, 23598-23606

Observation of enhanced magnetic entropy change near room temperature in Sr-site deficient La0.67Sr0.33MnO3 manganite

B. Arun, V. R. Akshay and M. Vasundhara, RSC Adv., 2019, 9, 23598 DOI: 10.1039/C9RA04973H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements