Skip to main content
Log in

Pentamethine sulfobenzoindocyanine dyes with low net charge states and high photostability

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A series of Cy5.5 dye analogs and targeted probes with net charges varied from ‒3 to 0 were synthesized by an optimized method, followed by comparing their spectral and photostability properties in saturated solutions of air, oxygen, and argon. The Cy5.5 analogs with reduced charge were relatively stable when irridated at their excitation maxima, with a trend of higher stability with lower net charge states. The photostability of dyes was markedly lower in pure oxygen and higher in inert argon relative to ambient atmospheric conditions. The stability of c(RGDyK) conjugates as models of targeted molecular imaging agents mirrored these results and demonstrated the practical utility of the new family of Cy5.5 fluorophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.-H. Tung, Fluorescent peptide probes for in vivo diagnostic imaging Pept. Sci., 2004, 76, 391–403.

    Article  CAS  Google Scholar 

  2. S. Luo, E. Zhang, Y. Su, T. Cheng and C. Shi, A review of NIR dyes in cancer targeting and imaging Biomaterials, 2011, 32, 7127–7138.

    Article  CAS  Google Scholar 

  3. R. Weissleder, Molecular imaging in cancer Science, 2006, 312, 1168–1171.

    Article  CAS  Google Scholar 

  4. S. Achilefu, Lighting up Tumors with Receptor-Specific Optical Molecular Probes, Technol. Cancer Res. Treat., 2004, 3, 393–409.

  5. C. D. Geddes, Reviews in Fluorescence 2009, Springer Science & Business Media, 2011.

  6. C. Shi, J. B. Wu and D. Pan, Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy, J. Biomed. Opt., 2016, 21, 050901.

  7. R. B. Mujumdar, L. A. Ernst, S. R. Mujumdar, C. J. Lewis and A. S. Waggoner, Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters, Bioconjugate Chem., 1993, 4, 105–111.

  8. S. R. Mujumdar, R. B. Mujumdar, C. M. Grant and A. S. Waggoner, Cyanine-Labeling Reagents: Sulfobenzindocyanine Succinimidyl Esters, Bioconjugate Chem., 1996, 7, 356–362.

  9. C. Bouteiller, G. Clavé, A. Bernardin, B. Chipon, M. Massonneau, P.-Y. Renard and A. Romieu, Novel water-soluble near-infrared cyanine dyes: synthesis, spectral properties, and use in the preparation of internally quenched fluorescent probes, Bioconjugate Chem., 2007, 18, 1303–1317.

  10. L. D. Patsenker, A. L. Tatarets and E. A. Terpetschnig, in Advanced Fluorescence Reporters in Chemistry and Biology I: Fundamentals and Molecular Design, ed. A. P. Demchenko, Springer, Berlin, Heidelberg, 2010, pp. 65–104.

  11. S. Zhu, R. Tian, A. L. Antaris, X. Chen and H. Dai, Near-Infrared-II Molecular Dyes for Cancer Imaging and Surgery, Adv. Mater., 2019, 31, 1900321.

  12. S. A. Hilderbrand, K. A. Kelly, R. Weissleder and C.-H. Tung, Monofunctional Near-Infrared Fluorochromes for Imaging Applications, Bioconjugate Chem., 2005, 16, 1275–1281.

  13. M. Veiseh, P. Gabikian, S.-B. Bahrami, O. Veiseh, M. Zhang, R. C. Hackman, A. C. Ravanpay, M. R. Stroud, Y. Kusuma, S. J. Hansen, D. Kwok, N. M. Munoz, R. W. Sze, W. M. Grady, N. M. Greenberg, R. G. Ellenbogen and J. M. Olson, Tumor paint: a chlorotoxin: Cy5.5 bioconjugate for intraoperative visualization of cancer foci, Cancer Res., 2007, 67, 6882–6888.

  14. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer Science & Business Media, 2013.

  15. A. Taruttis, S. Morscher, N. C. Burton, D. Razansky and V. Ntziachristos, Fast Multispectral Optoacoustic Tomography (MSOT) for Dynamic Imaging of Pharmacokinetics and Biodistribution in Multiple Organs, PLoS One, 2012, 7, e30491.

  16. M. D. Laramie, M. K. Smith, F. Marmarchi, L. R. McNally and M. Henary, Small Molecule Optoacoustic Contrast Agents: An Unexplored Avenue for Enhancing In Vivo Imaging, Molecules, 2018, 23(11), 2766–2788.

  17. S. Wang, J. Lin, T. Wang, X. Chen and P. Huang, Recent Advances in Photoacoustic Imaging for Deep-Tissue Biomedical Applications, Theranostics, 2016, 6, 2394–2413.

  18. Z. Chen, X. L. Deán-Ben, S. Gottschalk and D. Razansky, Performance of optoacoustic and fluorescence imaging in detecting deep-seated fluorescent agents, Biomed. Opt. Express, 2018, 9, 2229–2239.

  19. T. E. McCann, N. Kosaka, Y. Koide, M. Mitsunaga, P. L. Choyke, T. Nagano, Y. Urano and H. Kobayashi, Activatable optical imaging with a silica-rhodamine based near infrared (SiR700) fluorophore: a comparison with cyanine based dyes, Bioconjugate Chem., 2011, 22, 2531–2538.

  20. G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates and X. Zhuang, Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging, Nat. Methods, 2011, 8, 1027–1036.

  21. Y. Dai, X. Chen, J. Yin, X. Kang, G. Wang, X. Zhang, Y. Nie, K. Wu and J. Liang, Investigation of injection dose and camera integration time on quantifying pharmacokinetics of a Cy5.5-GX1 probe with dynamic fluorescence imaging in vivo, J. Biomed. Opt., 2016, 21, 86001.

  22. Y. Dai, J. Yin, Y. Huang, X. Chen, G. Wang, Y. Liu, X. Zhang, Y. Nie, K. Wu and J. Liang, In vivo quantifying molecular specificity of Cy5.5-labeled cyclic 9-mer peptide probe with dynamic fluorescence imaging, Biomed. Opt. Express, 2016, 7, 1149–1159.

  23. M. Gurfinkel, S. Ke, W. Wang, C. Li and E. M. Sevick-Muraca, Quantifying molecular specificity of alphavbeta3 integrin-targeted optical contrast agents with dynamic optical imaging, J. Biomed. Opt., 2005, 10, 034019.

  24. H. L. Osterman and A. Schutz-Geschwender, Seeing Beyond the Visible with IRDye Infrared Dyes, 2012, p. 18.

  25. T. Stahl, T. W. Allen and P. Béard, in Photonics West – Biomedical Optics, 2014.

  26. H. Schmitthenner, S. Beach, C. Weidman and T. Barrett,, Modular Imaging Agents Containing Amino Acids and Peptides, United States, US20150038672A1, 2015.

  27. C. Schwechheimer, F. Rönicke, U. Schepers and H.-A. Wagenknecht, A new structure–activity relationship for cyanine dyes to improve photostability and fluorescence properties for live cell imaging ESI available: Synthetic procedures, experimental procedures, DNA preparation, optical measurements, cell images and complete analytical data, Chem. Sci., 2018, 9, 6557–6563, DOI: 10.1039/c8sc01574k.

  28. E. Engel, R. Schraml, T. Maisch, K. Kobuch, B. König, R.-M. Szeimies, J. Hillenkamp, W. Bäumler and R. Vasold, Light-Induced Decomposition of Indocyanine Green, Invest. Ophthalmol. Visual Sci., 2008, 49, 1777–1783.

  29. X. Chen, X. Peng, A. Cui, B. Wang, L. Wang and R. Zhang, Photostabilities of novel heptamethine 3H-indolenine cyanine dyes with different N-substituents, J. Photochem. Photobiol., A, 2006, 181, 79–85.

  30. T. Li, L. Liu, T. Jing, Z. Ruan, P. Yuan and L. Yan, Self-Healing Organic Fluorophore of Cyanine-Conjugated Amphiphilic Polypeptide for Near-Infrared Photostable Bioimaging, ACS Appl. Mater. Interfaces, 2018, 10, 14517–14530.

  31. B. R. Renikuntla, H. C. Rose, J. Eldo, A. S. Waggoner and B. A. Armitage, Improved Photostability and Fluorescence Properties through Polyfluorination of a Cyanine Dye, Org. Lett., 2004, 6, 909–912.

  32. O. Mader, K. Reiner, H.-J. Egelhaaf, R. Fischer and R. Brock, Structure Property Analysis of Pentamethine Indocyanine Dyes: Identification of a New Dye for Life Science Applications, Bioconjugate Chem., 2004, 15, 70–78.

  33. R. B. Altman, Q. Zheng, Z. Zhou, D. S. Terry, J. D. Warren and S. C. Blanchard, Enhanced photostability of cyanine fluorophores across the visible spectrum, Nat. Methods, 2012, 9, 428–429.

  34. J. E. Berlier, A. Rothe, G. Buller, J. Bradford, D. R. Gray, B. J. Filanoski, W. G. Telford, S. Yue, J. Liu, C.-Y. Cheung, W. Chang, J. D. Hirsch, J. M. Beechem, R. P. Haugland and R. P. Haugland, Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates, J. Histochem. Cytochem., 2003, 51, 1699–1712.

  35. D. Su, C. L. Teoh, A. Samanta, N.-Y. Kang, S.-J. Park and Y.-T. Chang, The development of a highly photostable and chemically stable zwitterionic near-infrared dye for imaging applications, Chem. Commun., 2015, 51, 3989–3992.

  36. H. S. Choi, K. Nasr, S. Alyabyev, D. Feith, J. H. Lee, S. H. Kim, Y. Ashitate, H. Hyun, G. Patonay, L. Strekowski, M. Henary and J. V. Frangioni, Synthesis and In Vivo Fate of Zwitterionic Near-Infrared Fluorophores, Angew. Chem., Int. Ed., 2011, 50, 6258–6263.

  37. R. Achanath, S. Balaji and J. H. Johansen, Dye compositions and dye syntheses, WO2012001050A1, 2012.

  38. F. Danhier, A. Le Breton and V. Préat, RGD-Based Strategies To Target Alpha(v) Beta(3) Integrin in Cancer Therapy and Diagnosis, Mol. Pharm., 2012, 9, 2961–2973.

  39. F. Debordeaux, L. Chansel-Debordeaux, J.-B. Pinaquy, P. Fernandez and J. Schulz, What about αvβ3 integrins in molecular imaging in oncology?, Nucl. Med. Biol., 2018, 62–63, 31–46.

  40. Z. Cheng, Y. Wu, Z. Xiong, S. S. Gambhir and X. Chen, Near-Infrared Fluorescent RGD Peptides for Optical Imaging of Integrin αvβ3 Expression in Living Mice Bioconjugate Chem., 2005, 16, 1433–1441.

    Article  CAS  Google Scholar 

  41. Fluorescence quantum yields (QY) and lifetimes (τ) for Alexa Fluor dyes—Table 1.5—US, https://www.thermofisher.com/us/en/home/references/molecular-probes-the-handbook/tables/fluorescence-quantum-yields-and-lifetimes-for-alexafluor-dyes.htmlus/en/home/references/molecular-probes-the-handbook/tables/fluorescence-quantum-yields-and-lifetimes-for-alexafluor-dyes.html, (accessed 12 August 2019).

  42. L. Z. Benet, C. M. Hosey, O. Ursu and T. I. Oprea, BDDCS, the Rule of 5 and Drugability Adv. Drug Delivery Rev., 2016, 101, 89–98.

    Article  CAS  Google Scholar 

  43. C.-Y. Tang, F.-Y. Wu, M.-K. Yang, Y.-M. Guo, G.-H. Lu and Y.-H. Yang, A Classic Near-Infrared Probe Indocyanine Green for Detecting Singlet Oxygen, Int. J. Mol. Sci., 2016, 17(2), 219–227.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans F. Schmitthenner.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00445a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobson, D.E., Mahoney, E.R., Mach, T.P. et al. Pentamethine sulfobenzoindocyanine dyes with low net charge states and high photostability. Photochem Photobiol Sci 19, 56–65 (2020). https://doi.org/10.1039/c9pp00445a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00445a

Navigation