Skip to main content
Log in

Unraveling the photocatalytic properties of TiO2/WO3 mixed oxides†

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

TiO2/WO3 heterojunctions are one of the most investigated systems for photocatalytic applications. However, distinct behavior can be found in the literature depending on the pollutant to be degraded and the photocatalyst preparation conditions. Some authors reported improved photocatalytic activities in relation to TiO2, while others a deleterious effect. Different factors have been identified to influence the activity of such systems. In this work, a systematic investigation of TiO2/WO3 samples with different W/Ti ratios (0–100%) was carried out using different pollutants as targets (gaseous NO, acetaldehyde and aqueous methylene blue solutions). A detailed structural investigation along with transient absorption studies and photoelectrochemical measurements allowed the rationalization of some of the previously reported factors that control the TiO2/WO3 photoactivity, i.e. the inability to reduce molecular oxygen, the stabilization of the anatase phase and the adsorption surface properties. The investigations also identified a factor not previously reported: in TiO2/WO3 systems, a fraction of long-lived holes do not take part in the interfacial charge transfer to efficient hole quenchers, such as methanol. This behavior seems to be related to the doping of the TiO2 matrix with W(vi) and plays a key role in the photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Low, J. Yu, M. Jaroniec, S. Wageh and A. A. Al-Ghamdi, Heterojunction Photocatalysts, Adv. Mater., 2017, 29, 1601694.

    Article  CAS  Google Scholar 

  2. K. Afroz, M. Moniruddin, N. Bakranov, S. Kudaibergenov and N. Nuraje, A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials, J. Mater. Chem. A, 2018, 6, 21696–21718.

    Article  CAS  Google Scholar 

  3. L. Wei, C. Yu, Q. Zhang, H. Liu and Y.Wang, TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels, J. Mater. Chem. A, 2018, 6, 22411–22436.

    Article  CAS  Google Scholar 

  4. N. Fajrina and M. Tahir, A critical review in strategies to improve photocatalytic water splitting towards hydrogen production, Int. J. Hydrogen Energy, 2019, 44, 540–577.

    Article  CAS  Google Scholar 

  5. A. O. T. Patrocinio, L. F. Paula, R. M. Paniago, J. Freitag and D. W. Bahnemann, Layer-by-Layer TiO2/WO3 Thin Films As Efficient Photocatalytic Self-Cleaning Surfaces, ACS Appl. Mater. Interfaces, 2014, 6, 16859–16866.

    Article  CAS  PubMed  Google Scholar 

  6. Z. DohĿeviĿ-MitroviĿ, S. StojadinoviĿ, L. Lozzi, S. AškrabiĿ, M. RosiĿ, N. TomiĿ, N. PaunoviĿ, S. LazoviĿ, M. G. NikoliĿ and S. Santucci, WO3/TiO2 composite coatings: Structural, optical and photocatalytic properties, Mater. Res. Bull., 2016, 83, 217–224.

    Article  CAS  Google Scholar 

  7. A. A. Ismail, I. Abdelfattah, A. Helal, S. A. Al-Sayari, L. Robben and D. W. Bahnemann, Ease synthesis of mesoporous WO3–TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination, J. Hazard. Mater., 2016, 307, 43–54.

    Article  CAS  PubMed  Google Scholar 

  8. M. Yan, G. Li, C. Guo, W. Guo, D. Ding, S. Zhang and S. Liu, WO3−x sensitized TiO2 spheres with full-spectrumdriven photocatalytic activities from UV to near infrared, Nanoscale, 2016, 8, 17828–17835.

    Article  CAS  PubMed  Google Scholar 

  9. S. Dominguez, M. Huebra, C. Han, P. Campo, M. N. Nadagouda, M. J. Rivero, I. Ortiz and D. D. Dionysiou, Magnetically recoverable TiO2-WO3 photocatalyst to oxidize bisphenol A from model wastewater under simulated solar light, Environ. Sci. Pollut. Res., 2017, 24, 12589–12598.

    Article  CAS  Google Scholar 

  10. J. A. Mendoza, D. H. Lee and J.-H. Kang, Photocatalytic removal of gaseous nitrogen oxides using WO3/TiO2 particles under visible light irradiation: Effect of surface modification, Chemosphere, 2017, 182, 539–546.

    Article  CAS  PubMed  Google Scholar 

  11. C. P. Sajan, A. Naik and H. N. Girish, Hydrothermal fabrication of WO3-modified TiO2 crystals and their efficiency in photocatalytic degradation of FCF, Int. J. Environ. Sci. Technol., 2017, 14, 1513–1524.

    Article  CAS  Google Scholar 

  12. T. Xu, Y. Wang, X. Zhou, X. Zheng, Q. Xu, Z. Chen, Y. Ren and B. Yan, Fabrication and assembly of two-dimensional TiO2/WO3·H2O heterostructures with type II band alignment for enhanced photocatalytic performance, Appl. Surf. Sci., 2017, 403, 564–571.

    Article  CAS  Google Scholar 

  13. A. Arce-Sarria, F. Machuca-Martínez, C. Bustillo-Lecompte, A. Hernández-Ramírez and J. Colina-Márquez, Degradation and Loss of Antibacterial Activity of Commercial Amoxicillin with TiO2/WO3-Assisted Solar Photocatalysis, Catalysts, 2018, 8, 222.

    Article  CAS  Google Scholar 

  14. D. S. Han, R. Elshorafa, S. H. Yoon, S. Kim, H. Park and A. Abdel-Wahab, Sunlight-charged heterojunction TiO2 and WO3 particle-embedded inorganic membranes for nighttime environmental applications, Photochem. Photobiol. Sci., 2018, 17, 491–498.

    Article  CAS  PubMed  Google Scholar 

  15. K. Huang and Z. Cai, Synthesis of Three-dimensionally Ordered Macroporous TiO2 and TiO2/WO3 Composites and Their Photocatalytic Performance, Z. Anorg. Allg. Chem., 2018, 644, 1072–1077.

    Article  CAS  Google Scholar 

  16. H. Khan, M. G. Rigamonti, G. S. Patience and D. C. Boffito, Spray dried TiO2/WO3 heterostructure for photocatalytic applications with residual activity in the dark, Appl. Catal., B, 2018, 226, 311–323.

    Article  CAS  Google Scholar 

  17. J. A. Mendoza, D. H. Lee, L.-H. Kim, I. H. Kim and J.-H. Kang, Photocatalytic performance of TiO2 and WO3/ TiO2 nanoparticles coated on urban green infrastructure materials in removing nitrogen oxide, Int. J. Environ. Sci. Technol., 2018, 15, 581–592.

    Article  CAS  Google Scholar 

  18. S. Prabhu, L. Cindrella, O. J. Kwon and K. Mohanraju, Photoelectrochemical and photocatalytic activity of TiO2- WO3 heterostructures boosted by mutual interaction, Mater. Sci. Semicond. Process., 2018, 88, 10–19.

    Article  CAS  Google Scholar 

  19. L. Soares and A. Alves, Photocatalytic properties of TiO2 and TiO2/WO3 films applied as semiconductors in heterogeneous photocatalysis, Mater. Lett., 2018, 211, 339–342.

    Article  CAS  Google Scholar 

  20. M. B. Tahir, M. Sagir and K. Shahzad, Removal of acetylsalicylate and methyl-theobromine from aqueous environment using nano-photocatalyst WO3-TiO2 @g-C3N4 composite, J. Hazard. Mater., 2019, 363, 205–213.

    Article  CAS  PubMed  Google Scholar 

  21. J. Hu, L. Wang, P. Zhang, C. Liang and G. Shao, Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production, J. Power Sources, 2016, 328, 28–36.

    Article  CAS  Google Scholar 

  22. C. Sotelo-Vazquez, R. Quesada-Cabrera, M. Ling, D. O. Scanlon, A. Kafizas, P. K. Thakur, T.-L. Lee, A. Taylor, G. W. Watson, R. G. Palgrave, J. R. Durrant, C. S. Blackman and I. P. Parkin, Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO3/TiO2 Heterojunction Films: A Computational and Experimental Study, Adv. Funct. Mater., 2017, 27, 1605413.

    Article  CAS  Google Scholar 

  23. H. Liu, W. Guo, Y. Li, S. He and C. He, Photocatalytic degradation of sixteen organic dyes by TiO2/WO3-coated magnetic nanoparticles under simulated visible light and solar light, J. Environ. Chem. Eng., 2018, 6, 59–67.

    Article  CAS  Google Scholar 

  24. H. Tada, A. Kokubu, M. Iwasaki and S. Ito, Deactivation of the TiO2 Photocatalyst by Coupling with WO3 and the Electrochemically Assisted High Photocatalytic Activity of WO3, Langmuir, 2004, 20, 4665–4670.

    Article  CAS  PubMed  Google Scholar 

  25. S. Higashimoto, Y. Ushiroda and M. Azuma, Electrochemically Assisted Photocatalysis of Hybrid WO3/ TiO2 Films: Effect of the WO3 Structures on Charge Separation Behavior, Top. Catal., 2008, 47, 148–154.

    Article  CAS  Google Scholar 

  26. C.-F. Lin, C.-H. Wu and Z.-N. Onn, Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems, J. Hazard. Mater., 2008, 154, 1033–1039.

    Article  CAS  PubMed  Google Scholar 

  27. J. Yang, X. Zhang, H. Liu, C. Wang, S. Liu, P. Sun, L. Wang and Y. Liu, Heterostructured TiO2/WO3 porous microspheres: Preparation, characterization and photocatalytic properties, Catal. Today, 2013, 201, 195–202.

    Article  CAS  Google Scholar 

  28. L. Yang, Z. Si, D. Weng and Y. Yao, Synthesis, characterization and photocatalytic activity of porous WO3/TiO2 hollow microspheres, Appl. Surf. Sci., 2014, 313, 470–478.

    Article  CAS  Google Scholar 

  29. G. Žerjav, M. S. Arshad, P. Djinović, J. Zavašnik and A. Pintar, Electron trapping energy states of TiO2–WO3 composites and their influence on photocatalytic degradation of bisphenol A, Appl. Catal., B, 2017, 209, 273–284.

    Article  CAS  Google Scholar 

  30. A. O. T. Patrocinio, E. B. Paniago, R. M. Paniago and N. Y. M. Iha, XPS characterization of sensitized n-TiO2 thin films for dye-sensitized solar cell applications, Appl. Surf. Sci., 2008, 254, 1874–1879.

    CAS  Google Scholar 

  31. A. O. T. Patrocinio, A. El-Bachá, E. B. Paniago, R. M. Paniago and N. Y. M. Iha, Influence of the Sol-Gel pH Process and Compact Film on the Efficiency of TiO2-Based Dye-Sensitized Solar Cells, Int. J. Photoenergy, 2012, 2012, 7.

    Article  CAS  Google Scholar 

  32. E. P. Barrett, L. G. Joyner and P. P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, J. Am. Chem. Soc., 1951, 73, 373–380.

    Article  CAS  Google Scholar 

  33. A. O. T. Patrocinio, J. Schneider, M. D. Franca, L. M. Santos, B. P. Caixeta, A. E. H. Machado and D. W. Bahnemann, Charge carrier dynamics and photocatalytic behavior of TiO2 nanopowders submitted to hydrothermal or conventional heat treatment, RSC Adv., 2015, 5, 70536–70545.

    Article  CAS  Google Scholar 

  34. K. A. Borges, L. M. Santos, R. M. Paniago, N. M. Barbosa Neto, J. Schneider, D. W. Bahnemann, A. O. T. Patrocinio and A. E. H. Machado, Characterization of a highly efficient N-doped TiO2 photocatalyst prepared via factorial design, New J. Chem., 2016, 40, 7846–7855.

    Article  CAS  Google Scholar 

  35. T.-P. Lin and H. K. A. Kan, Calculation of Reflectance of a Light Diffuser with Nonuniform Absorption, J. Opt. Soc. Am., 1970, 60, 1252–1256.

    Article  CAS  Google Scholar 

  36. R. W. Kessler, G. Krabichler, S. Uhl, D. Oelkrug, W. P. Hagan, J. Hyslop and F. Wilkinson, Transient Decay Following Pulse Excitation of Diffuse Scattering Samples, Optica Acta: Int. J. Optics, 1983, 30, 1099–1111.

    Article  CAS  Google Scholar 

  37. N. O. Balayeva, M. Fleisch and D. W. Bahnemann, Surfacegrafted WO3/TiO2 photocatalysts: Enhanced visible-light activity towards indoor air purification, Catal. Today, 2018, 313, 63–71.

    Article  CAS  Google Scholar 

  38. F. Sieland, J. Schneider and D. W. Bahnemann, Photocatalytic activity and charge carrier dynamics of TiO2 powders with a binary particle size distribution, Phys. Chem. Chem. Phys., 2018, 20, 8119–8132.

    Article  CAS  PubMed  Google Scholar 

  39. J. Tschirch, R. Dillert and D. Bahnemann, Photocatalytic degradation of Methylene blue on fixed powder layers: Which limitations are to be considered?, J. Adv. Oxid. Technol., 2008, 11, 193–198.

    CAS  Google Scholar 

  40. A. Mills, An overview of the methylene blue ISO test for assessing the activities of photocatalytic films, Appl. Catal., B, 2012, 128, 144–149.

    Article  CAS  Google Scholar 

  41. F. Riboni, M. V. Dozzi, M. C. Paganini, E. Giamello and E. Selli, Photocatalytic activity of TiO2-WO3 mixed oxides in formic acid oxidation, Catal. Today, 2017, 287, 176–181.

    Article  CAS  Google Scholar 

  42. M. R. Mohammadi, D. J. Fray and A. Mohammadi, Sol–gel nanostructured titanium dioxide: Controlling the crystal structure, crystallite size, phase transformation, packing and ordering, Microporous Mesoporous Mater., 2008, 112, 392–402.

    Article  CAS  Google Scholar 

  43. D.-S. Kim, J.-H. Yang, S. Balaji, H.-J. Cho, M.-K. Kim, D.-U. Kang, Y. Djaoued and Y.-U. Kwon, Hydrothermal synthesis of anatase nanocrystals with lattice and surface doping tungsten species, CrystEngComm, 2009, 11, 1621–1629.

    Article  CAS  Google Scholar 

  44. M. Horn, C. Schwebdtfeger and E. Meagher, Refinement of the structure of anatase at several temperatures, Z. Kristallogr.Cryst. Mater., 1972, 136, 273–281.

    Article  CAS  Google Scholar 

  45. R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, 32, 751–767.

    Article  Google Scholar 

  46. F. Riboni, L. G. Bettini, D. W. Bahnemann and E. Selli, WO3–TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides, Catal. Today, 2013, 209, 28–34.

    Article  CAS  Google Scholar 

  47. A. Kubacka, A. Fuerte, A. Martínez-Arias and M. Fernández- García, Nanosized Ti–V mixed oxides: Effect of doping level in the photo-catalytic degradation of toluene using sunlight- type excitation, Appl. Catal., B, 2007, 74, 26–33.

    Article  CAS  Google Scholar 

  48. M. Fernández-García, A. Martinez-Arias, A. Fuerte and J. Conesa, Nanostructured Ti− W Mixed-Metal Oxides: Structural and Electronic Properties, J. Phys. Chem. B, 2005, 109, 6075–6083.

    Article  PubMed  CAS  Google Scholar 

  49. G. Tompsett, G. Bowmaker, R. Cooney, J. Metson, K. Rodgers and J. Seakins, The Raman spectrum of brookite, TiO2 (PBCA, Z = 8), J. Raman Spectrosc., 1995, 26, 57–62.

    Article  CAS  Google Scholar 

  50. A. Gutiérrez-Alejandre, J. Ramírez and G. Busca, A Vibrational and Spectroscopic Study of WO3/TiO2−Al2O3 Catalyst Precursors, Langmuir, 1998, 14, 630–639.

    Article  Google Scholar 

  51. A. I. Gavrilyuk, Aging of the nanosized photochromic WO3 films and the role of adsorbed water in the photochromism, Appl. Surf. Sci., 2016, 364, 498–504.

    Article  CAS  Google Scholar 

  52. Y.-A. Lee, S.-I. Han, H. Rhee and H. Seo, Correlation between excited d-orbital electron lifetime in polaron dynamics and coloration of WO3 upon ultraviolet exposure, Appl. Surf. Sci., 2018, 440, 1244–1251.

    Article  CAS  Google Scholar 

  53. I. M. Szilágyi, S. Saukko, J. Mizsei, A. L. Tóth, J. Madarász and G. Pokol, Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S, Solid State Sci., 2010, 12, 1857–1860.

    Article  CAS  Google Scholar 

  54. S. Kumar, K. Ojha and A. K. Ganguli, Interfacial Charge Transfer in Photoelectrochemical Processes, Adv. Mater. Interfaces, 2017, 4, 1600981.

    Article  CAS  Google Scholar 

  55. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D. W. Bahnemann, Understanding TiO2 Photocatalysis: Mechanisms and Materials, Chem. Rev., 2014, 114, 9919–9986.

    Article  CAS  PubMed  Google Scholar 

  56. A. O. T. Patrocinio, J. Schneider, M. D. França, L. M. Santos, B. P. Caixeta, A. E. H. Machado and D. W. Bahnemann, Charge carrier dynamics and photocatalytic behavior of TiO2 nanopowders submitted to hydrothermal or conventional heat treatment, RSC Adv., 2015, 5, 70536–70545.

    Article  CAS  Google Scholar 

  57. G. M. Hasselmann and G. J. Meyer, Diffusion-Limited Interfacial Electron Transfer with Large Apparent Driving Forces, J. Phys. Chem. B, 1999, 103, 7671–7675.

    Article  CAS  Google Scholar 

  58. V. Cristino, S. Marinello, A. Molinari, S. Caramori, S. Carli, R. Boaretto, R. Argazzi, L. Meda and C. A. Bignozzi, Some aspects of the charge transfer dynamics in nanostructured WO3 films, J. Mater. Chem. A, 2016, 4, 2995–3006.

    Article  CAS  Google Scholar 

  59. S. Corby, L. Francàs, S. Selim, M. Sachs, C. Blackman, A. Kafizas and J. R. Durrant, Water Oxidation and Electron Extraction Kinetics in Nanostructured Tungsten Trioxide Photoanodes, J. Am. Chem. Soc., 2018, 140, 16168–16177.

    Article  CAS  PubMed  Google Scholar 

  60. H. Kisch, Semiconductor Photocatalysis, Wiley-VCH, 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo F. Paula.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/ c9pp00163h

Both authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paula, L.F., Hofer, M., Lacerda, V.P.B. et al. Unraveling the photocatalytic properties of TiO2/WO3 mixed oxides†. Photochem Photobiol Sci 18, 2469–2483 (2019). https://doi.org/10.1039/c9pp00163h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00163h

Navigation