Skip to main content

Advertisement

Log in

The influence of laser intensity activated plasmonic gold nanoparticle-generated photothermal effects on cellular morphology and viability: a real-time, long-term tracking and monitoring system

  • PAPER
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this study, a microfluidic apparatus embedded with microstructures was designed and aligned with a laser and dark-field microscope for real-time, long-term observation of photothermal effects on cells. Gold nanorods (AuNRs, 10 ppm) were incubated with MG-63 human osteosarcoma cells for 3 h. Then, the cells were exposed to a continuous-wave laser at a wavelength of 830 nm for 10, 20, and 30 min at 5, 9,14, 24, and 32 W cm−2. Subsequent changes in morphology were observed. Under different conditions, cell membrane blebbing occurred at different times, indicating that actin filaments were destroyed in large quantities and apoptosis was induced. In suitable conditions, we first induced slight cell injury by causing cytoskeletal fractures with a high-energy laser; then, the cells were irradiated with a low-energy laser at 0.3 W cm−2.We found that among cells treated with the high-energy laser, cells treated additionally with a low-energy laser showed extended viability compared with cells that did not receive the additional treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Nelson and C. S. Chen, Cell-cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal, FEBSLett., 2002, 514, 238–242.

    Article  CAS  Google Scholar 

  2. L. A. Tiemeijer, J. P. Frimat, O. M. J. A. Stassen, C. V. C. Bouten and C. M. Sahlgren, Spatial patterning of the Notch ligand Dll4 controls endothelial sprouting in vitro, Sci. Rep., 2018, 8, 6392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. D. H. Kohn, M. Sarmadi, J. I. Helman and P. H. Krebsbach, Effects of pH on human bone marrow stromal cells in vitro: implications for tissue engineering of bone, J. Biomed. Mater. Res., 2002, 60, 292–299.

    Article  CAS  PubMed  Google Scholar 

  4. S. Razaq, R. J. Wilkins and J. P. G. Urban, The effect of extracellular pH on matrix turnover by cells of the bovine nucleus pulposus, Eur. Spine J., 2003, 12, 341–349.

    Article  PubMed  PubMed Central  Google Scholar 

  5. S. Miao, H. Cui, M. Nowicki, S. J. Lee, J. Almeida, X. Zhou, W. Zhu, X. Yao, F. Masood, M. W. Plesniak, M. Mohiuddin and L. G. Zhang, Photolithographic-stereolithographic-tandem fabrication of 4D smart scaffolds for improved stem cell cardiomyogenic differentiation, Biofabrication, 2018, 10, 035007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. K. W. Kwon, J. C. Choi, K. Y. Suh and J. Doh, Multiscale fabrication of multiple proteins and topographical struc tures by combining capillary force lithography and microscope projection photolithography, Langmuir, 2011, 27, 3238–3243.

    Article  CAS  PubMed  Google Scholar 

  7. H. Kim, G. H. Yang, C. H. Choi, Y. S. Cho and G. Kim, Gelatin/PVA scaffolds fabricated using a 3D-printing process employed with a low-temperature plate for hard tissue regeneration: Fabrication and characterizations, Int. J. Biol. Macromol., 2018, 120, 119–127.

    Article  CAS  PubMed  Google Scholar 

  8. M. Seidenstuecker, L. Kerr, A. Bernstein, H. O. Mayr, N. P. Suedkamp, R. Gadow, P. Krieg, S. H. Latorre, R. Thomann, F. Syrowatka and S. Esslinger, 3D powder printed bioglass and ß-tricalcium phosphate bone scaffolds, Materials, 2017, 11, 13, DOI: 10.3390/ ma11010013.

    Google Scholar 

  9. M. H. Ghanian, Z. Farzaneh, J. Barzin, M. Zandi, M. Kazemi-Ashtiani, M. Alikhani, M. Ehsani and H. Baharvand, Nanotopographical control of human embryonic stem cell differentiation into definitive endoderm, J. Biomed. Mater. Res., Part A, 2015, 103, 3539–3553.

    Article  CAS  Google Scholar 

  10. B. Luo, L. Tian, N. Chen, S. Ramakrishna, N. Thakor and I. H. Yang, Electrospun nanofibers facilitate better alignment, differentiation, and long-term culture in an in vitro model of the neuromuscular junction (NMJ), Biomater. Sci., 2018, 6, 3262–3272.

    Article  CAS  PubMed  Google Scholar 

  11. J. Foncy, A. Estève, A. Degache, C. Colin, X. Dollat, J. C. Cau, C. Vieu, E. Trévisiol and L. Malaquin, Dynamic inking of large-scale stamps for multiplexed microcontact printing and fabrication of cell microarrays, PLoS One, 2018, 13, e0202531.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Y. B. Lee, S. J. Kim, E. M. Kim, H. Byun, H. K. Chang, J. Park, Y. S. Choi and H. Shin, Microcontact printing of polydopamine on thermally expandable hydrogels for controlled cell adhesion and delivery of geometrically defined microtissues, Acta Biomater., 2017, 61, 75–87.

    Article  PubMed  CAS  Google Scholar 

  13. Y. H. Su, P. C. Chianga, L. J. Cheng, C. H. Lee, N. S. Swami and C. F. Chou, High aspect ratio nanoimprinted grooves of poly(lactic-co-glycolic acid) control the length and direction of retraction fibers during fibroblast cell division, Biointerphases, 2015, 10, 1–8.

    Article  CAS  Google Scholar 

  14. H. Hufnagel, A. Huebner, C. Gulch, K. Guse, C. Abell and F. Hollfelder, An integrated cell culture lab on a chip: modular microdevices for cultivation of mammalian cells and delivery into microfluidic microdroplets, Lab Chip, 2009, 9, 1576–1582.

    Article  CAS  PubMed  Google Scholar 

  15. S. M. Grist, L. Chrostowski and K. C. Cheung, Optical oxygen sensors for applications in microfluidic cell culture, Sensors, 2010, 10, 9286–9316.

    Article  CAS  PubMed  Google Scholar 

  16. S. Kobel, A. Valero, J. Latt, P. Renaud and M. Lutolf, Optimization of microfluidic single cell trapping for longterm on-chip culture, Lab Chip, 2010, 10, 857–863.

    Article  CAS  PubMed  Google Scholar 

  17. D. Di Carlo, L. Y. Wu and L. P. Lee, Dynamic single cell culture array, Lab Chip, 2006, 6, 1445–1449.

    Article  PubMed  CAS  Google Scholar 

  18. W. Chen, N. T. Huang, B. Oh, R. H. Lam, R. Fan, T. T. Cornell, T. P. Shanley, K. Kurabayashi and J. Fu, Surface-micromachined microfiltration membranes for efficient isolation and functional immunophenotyping of subpopulations of immune cells, Adv. Healthcare Mater., 2013, 2, 965–975.

    Article  CAS  Google Scholar 

  19. J. Kim, D. Taylor, N. Agrawal, H. Wang, H. Kim, A. Han, K. Rege and A. Jayaraman, A programmable microfluidic cell array for combinatorial drug screening, Lab Chip, 2012, 12, 1813–1822.

    Article  CAS  PubMed  Google Scholar 

  20. C. H. Lin, Y. H. Hsiao, H. C. Chang, C. F. Yeh, C. K. He, E. M. Salm, C. Chen, I. M. Chiu and C. H. Hsu, A microfluidic dual-well device for high-throughput single-cell capture and culture, Lab Chip, 2015, 15, 2928–2938.

    Article  CAS  PubMed  Google Scholar 

  21. F. Shen, X. Li and P. C. Li, Study of flow behaviors on single-cell manipulation and shear stress reduction in microfluidic chips using computational fluid dynamics simulations, Biomicrofluidics, 2014, 8, 014109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. V. Biju, Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy, Chem. Soc. Rev., 2014, 43, 744–764.

    Article  CAS  PubMed  Google Scholar 

  23. J. Shi, Z. Chen, L. Wang, B. Wang, L. Xu, L. Hou and Z. Zhang, A tumor-specific cleavable nanosystem of PEG-modified C60@Au hybrid aggregates for radio frequency-controlled release, hyperthermia, photodynamic therapy and X-ray imaging, Acta Biomater., 2015, 29, 282–297.

    Article  PubMed  CAS  Google Scholar 

  24. S. F. Lai, B. H. Ko, C. C. Chien, C. J. Chang, S. M. Yang, H. H. Chen, C. Petibois, D. Y. Hueng, S. M. Ka, A. Chen, G. Margaritondo and Y. Hwu, Gold nanoparticles as multimodality imaging agents for brain gliomas, J. Nanobiotechnol., 2015, 13, 85.

    Article  CAS  Google Scholar 

  25. M. Xuan, J. Shao, L. Dai, J. Li and Q. He, Macrophage cell membrane camouflaged au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy, ACS Appl. Mater. Interfaces, 2016, 8, 9610–9618.

    Article  CAS  PubMed  Google Scholar 

  26. P. Zhang, J. Wang, H. Huang, B. Yu, K. Qiu, J. Huang, S. Wang, L. Jiang, G. Gasser, L. Ji and H. Chao, Unexpected high photothemal conversion efficiency of gold nanospheres upon grafting with two-photon luminescent ruthe-nium(II) complexes: A way towards cancer therapy?, Biomaterials, 2015, 63, 102–114.

    Article  CAS  PubMed  Google Scholar 

  27. K. Jadhav, R. Hr, S. Deshpande, S. Jagwani, D. Dhamecha, S. Jalalpure, K. Subburayan and D. Baheti, Phytosynthesis of gold nanoparticles: Characterization, biocompatibility, and evaluation of its osteoinductive potential for application in implant dentistry, Mater. Sci. Eng., C, 2018, 93, 664–670.

    Article  CAS  Google Scholar 

  28. C. Yi, D. Liu, C. C. Fong, J. Zhang and M. Yang, Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway, ACS Nano, 2010, 4, 6439–6448.

    Article  CAS  PubMed  Google Scholar 

  29. C. C. Medalha, A. L. Santos, O. Veronez Sde, K. R. Fernandes, A. M. Magri and A. C. Renno, Low level laser therapy accelerates bone healing in spinal cord injured rats, J. Photochem. Photobiol., B, 2016, 159, 179–185.

    Article  CAS  Google Scholar 

  30. M. Xavier, D. R. David, R. A. de Souza, A. N. Arrieiro, H. Miranda, E. T. Santana, J. A. Silva Jr., M. A. Salgado, F. Aimbire and R. Albertini, Anti-inflammatory effects of low-level light emitting diode therapy on Achilles tendinitis in rats, Lasers Surg. Med., 2010, 42, 553–558.

    Article  PubMed  Google Scholar 

  31. R. Medina-Huertas, F. J. Manzano-Moreno, E. De Luna-Bertos, J. Ramos-Torrecillas, O. Garcia-Martinez and C. Ruiz, The effects of low-level diode laser irradiation on differentiation, antigenic profile, and phagocytic capacity of osteoblast-like cells (MG-63), Lasers Med. Sci., 2014, 29, 1479–1484.

    PubMed  Google Scholar 

  32. L. R. Rau, W. Y. Huang, J. W. Liaw and S. W. Tsai, Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells, Int. J. Nanomed., 2016, 11, 3461–3473.

    Article  CAS  Google Scholar 

  33. E. Zeinizade, M. Tabei, A. Shakeri-Zadeh, H. Ghaznavi, N. Attaran, A. Komeili, B. Ghalandari, S. Maleki and S. K. Kamrava, Selective apoptosis induction in cancer cells using folate-conjugated gold nanoparticles and controlling the laser irradiation conditions, Artif. Cells, Nanomed., Biotechnol., 2018, 46, 1026–1038.

    Article  CAS  Google Scholar 

  34. K. Yue, J. Nan, X. Zhang, J. Tang and X. Zhang, Photothermal effects of gold nanoparticles induced by light emitting diodes, Appl. Therm. Eng., 2016, 99, 1093–1100.

    Article  CAS  Google Scholar 

  35. Y. Liu, M. Xu, Q. Chen, G. Guan, W. Hu, X. Zhao, M. Qiao, H. Hu, Y. Liang, H. Zhu and D. Chen, Gold nanorods/meso-porous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser, Int. J. Nanomed., 2015, 10, 4747–4761.

    Article  CAS  Google Scholar 

  36. B. Nikoobakht and M. A. El-Sayed, Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method, Chem. Mater., 2003, 15, 1957–1962.

    Article  CAS  Google Scholar 

  37. Q. Sun, X. Shi, J. Feng, Q. Zhang, Z. Ao, Y. Ji, X. Wu, D. Liu and D. Han, Cytotoxicity and cellular responses of gold nanorods to smooth muscle cells dependent on surface chemistry coupled action, Small, 2018, 14, e1803715.

    Article  PubMed  CAS  Google Scholar 

  38. G. N. Abdelrasoul, M. Scotto, R. Cingolani, A. Diaspro, A. Athanassiou and F. Pignatelli, Effect of precursor solution dark incubation on gold nanorods morphology, J. Cryst. Growth, 2012, 361, 159–165.

    Article  CAS  Google Scholar 

  39. A. J. Zollinger, H. Xu, J. Figueiredo, J. Paredes, R. Seruca, D. Stamenovic and M. L. Smith, Dependence of tensional homeostasis on cell type and on cell-cell interactions, Cell. Mol. Bioeng., 2018, 11, 175–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. M. Wesseling, T. R. Sakkers, S. C. A. de Jager, G. Pasterkamp and M. J. Goumans, The morphological and molecular mechanisms of epithelial/endothelial-to-mesenchymal transition and its involvement in atherosclerosis, Vasc. Pharmacol., 2018, 106, 1–8.

    Article  CAS  Google Scholar 

  41. M. Natoli, B. D. Leoni, I. D'Agnano, M. D'Onofrio, R. Brandi, I. Arisi, F. Zucco and A. Felsani, Cell growing density affects the structural and functional properties of Caco-2 differentiated monolayer, J. Cell. Physiol., 2011, 226, 1531–1543.

    Article  CAS  PubMed  Google Scholar 

  42. S. W. Tsai, J. W. Liaw, Y. C. Kao, M. Y. Huang, C. Y. Lee, L. R. Rau, C. Y. Huang, K. C. Wei and T. C. Ye, Internalized gold nanoparticles do not affect the osteogenesis and apoptosis of mg63 osteoblast-like cells: a quantitative, in vitro study, PLoS One, 2013, 8, e76545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. L. R. Rau, S. W. Tsao, J. W. Liaw and S. W. Tsai, Selective targeting and restrictive damage for nonspecific cells by pulsed laser-activated hyaluronan-gold nanoparticles, Biomacromolecules, 2016, 17, 2514–2521.

    Article  CAS  PubMed  Google Scholar 

  44. C. S. Rejiya, J. Kumar, V. Raji, M. Vibin and A. Abraham, Laser immunotherapy with gold nanorods causes selective killing of tumour cells, Pharmacol. Res., 2012, 65, 261–269.

    Article  CAS  Google Scholar 

  45. M. J. Akhtar, M. Ahamed, H. A. Alhadlaq and A. Alshamsan, Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders, Biochim. Biophys. Acta, Gen. Subj., 2017, 1861, 802–813.

    Article  CAS  Google Scholar 

  46. J. Balke, P. Volz, F. Neumann, R. Brodwolf, A. Wolf, H. Pischon, M. Radbruch, L. Mundhenk, A. D. Gruber, N. Ma and U. Alexiev, Visualizing oxidative cellular stress induced by nanoparticles in the subcytotoxic range using fluorescence lifetime imaging, Small, 2018, 14, e1800310.

    Article  PubMed  CAS  Google Scholar 

  47. Y. Son, Y. K. Cheong, N. H. Kim, H. T. Chung, D. G. Kang and H. O. Pae, Mitogen-activated protein kinases and reactive oxygen species: how can ros activate mapk pathways?, J. Signal Transduction, 2011, 2011, 792639.

    Article  CAS  Google Scholar 

  48. L. Luo, Z. Sun, L. Zhang, X. Li, Y. Dong and T. C. Y. Liu, Effects of low-level laser therapy on ROS homeostasis and expression of IGF-1 and TGF-ß1 in skeletal muscle during the repair process, Lasers Med. Sci., 2013, 28, 725–734.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiao-Wen Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YC., Lei, K.F., Liaw, JW. et al. The influence of laser intensity activated plasmonic gold nanoparticle-generated photothermal effects on cellular morphology and viability: a real-time, long-term tracking and monitoring system. Photochem Photobiol Sci 18, 1419–1429 (2019). https://doi.org/10.1039/c9pp00054b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00054b

Navigation