Issue 65, 2019

Record-high thermal stability achieved in a novel single-component all-organic ferroelectric crystal exhibiting polymorphism

Abstract

Traditionally, lead and heavy metal containing inorganic oxides dominate the area of ferroelectricity. Although, recently, lightweight non-toxic organic ferroelectrics have emerged as excellent alternatives, achieving higher temperature up to which the ferroelectric phase can persist has remained a challenge. Moreover, only a few of those are single-component molecular ferroelectrics and were discovered upon revisiting their crystal structures. Here we report a novel phenanthroimidazole derivative, which not only displays notable spontaneous and highly stable remnant polarizations with a low coercive field but also retains its ferroelectric phase up to a record-high temperature of ∼521 K. Subsequently, the crystal undergoes phase transition to form non-polar and centrosymmetric polymorphs, the first study of its kind in a single-component ferroelectric crystal. Moreover, the compound exhibits a significantly high thermal stability. Given the excellent figures-of-merit for ferroelectricity, this material is likely to find potential applications in microelectronic devices pertaining to non-volatile memory.

Graphical abstract: Record-high thermal stability achieved in a novel single-component all-organic ferroelectric crystal exhibiting polymorphism

Supplementary files

Article information

Article type
Communication
Submitted
10 Jun 2019
Accepted
08 Jul 2019
First published
09 Jul 2019

Chem. Commun., 2019,55, 9610-9613

Record-high thermal stability achieved in a novel single-component all-organic ferroelectric crystal exhibiting polymorphism

S. Dutta, Vikas, A. Yadav, R. Boomishankar, A. Bala, V. Kumar, T. Chakraborty, S. Elizabeth and P. Munshi, Chem. Commun., 2019, 55, 9610 DOI: 10.1039/C9CC04434E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements