Issue 43, 2017

Spectroscopic identification of the chemical interplay between defects and dopants in Al-doped ZnO

Abstract

The conduction and optoelectronic properties of transparent conductive oxides can be largely modified by intentional inclusion of dopants over a very large range of concentrations. However, the simultaneous presence of structural defects results in an unpredictable complexity that prevents a clear identification of chemical and structural properties of the final samples. By exploiting the unique chemical sensitivity of Hard X-ray Photoelectron Spectra and Near Edge X-ray Absorption Fine Structure in combination with Density Functional Theory, we determine the contribution to the spectroscopic response of defects in Al-doped ZnO films. Satellite peaks in O1s and modifications at the O K-edge allow the determination of the presence of H embedded in ZnO and the very low concentration of Zn vacancies and O interstitials in undoped ZnO. Contributions coming from substitutional and (above the solubility limit) interstitial Al atoms have been clearly identified and have been related to changes in the oxide stoichiometry and increased oxygen coordination, together with small lattice distortions. In this way defects and doping in oxide films can be controlled, in order to tune their properties and improve their performances.

Graphical abstract: Spectroscopic identification of the chemical interplay between defects and dopants in Al-doped ZnO

Article information

Article type
Paper
Submitted
28 Aug 2017
Accepted
08 Oct 2017
First published
09 Oct 2017

Phys. Chem. Chem. Phys., 2017,19, 29364-29371

Spectroscopic identification of the chemical interplay between defects and dopants in Al-doped ZnO

S. Benedetti, I. Valenti, A. di Bona, G. Vinai, C. Castan-Guerrero, S. Valeri, A. Catellani, A. Ruini, P. Torelli and A. Calzolari, Phys. Chem. Chem. Phys., 2017, 19, 29364 DOI: 10.1039/C7CP05864K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements