Skip to main content

Advertisement

Log in

Responses of Crepis japonica induced by supplemental blue light and UV-A radiation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Crepis japonica (L.) D.C. (Asteraceae), a weed with antioxidant, antiallergenic, antiviral and antitumor properties displays both medicinal properties and nutritional value. This study aims to assess the effects of a supplementation of blue light and UV-A radiation on the growth, leaf anatomical structure and phenolic profile of the aerial parts of Crepis japonica. Plants were grown under two light treatments: W (control - white light), W + B (white light supplemented with blue light) and W + UV-A (white light supplemented with UV-A radiation). We recorded the length, width, and weight of fresh and dry leaves, the thickness of the epidermis and mesophyll, and stomata density. The phenolic profiles of the aqueous extracts of the aerial parts were analyzed by HPLC-DAD. There was an increase in the leaf size, stomatal density, and phenolic production, and a thickening of the mesophyll and epidermis. UV-A radiation increased the phenolic production more than blue light. Blue light and UV-A radiation both improved the production of caffeic acid by about 6 and 3 times, respectively, in comparison to control. This compound was first reported as a constituent of the extract from the aerial parts together with caftaric acid. UV-A also promoted the production of chlorogenic acid (about 1.5 times in comparison to the control). We observed that the morphological and chemical parameters of C. japonica are modified in response to blue light and UV-A radiation, which can be used as tools in the cultivation of this species in order to improve its medicinal properties and nutritional value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. B. Garden, Tropicos.org., http://www.tropicos.org (accessed October 2015)

    Google Scholar 

  2. K. Nakamura Y. Kono C. Huang Jr. K. F. Chung and C. I. Peng, Correction of confusions regarding the identity and synonymy of Youngia (Asteraceae: Tribe Cichorieae) in Taiwan, Syst. Bot., 2013, 38 2, 507–516.

    Article  Google Scholar 

  3. J. Y. Lee M. Cha M. R. Kim K. Lee S. Choi and S. Y. Ryu, Two Novel Guaiane Sesquiterpenes from the Whole Plant of Youngia japonica, Planta Med. Lett., 2015, 2, e31–e34. http://www.thieme-connect.de/products

    Article  Google Scholar 

  4. H. Lorenzi, Plantas daninhas do Brasil: terrestres, parasitas, aquáticas e tóxicas, Plantarum, Nova Odessa, 2008

    Google Scholar 

  5. A. C. Slanis and M. C. Perea, Youngia japonica (Asteraceae, Lactuceae), una novedad para la Flora adventicia de Argentina, Bol Soc Argent Bot, 2011, 46 1-2, 139–143.

    Google Scholar 

  6. E. Yae S. Yahara M. El-Aasr T. Ikeda H. Yoshimitsu C. Masuoka M. Ono I. Hide Y. Nakata and T. Nohara, Studies on the constituents of whole plants of Youngia japonica, Chem. Pharm. Bull., 2009, 57 7, 719–723.

    Article  CAS  Google Scholar 

  7. L. S. M. Ooi H. Wang Z. He and V. E. C. Ooi, Antiviral activities of purified compounds from Youngia japonica (L.) DC (Asteraceae, Compositae), J. Ethnopharmacol., 2006, 106 2, 187–191.

    Article  CAS  PubMed  Google Scholar 

  8. L. S. M. Ooi H. Wang C. W. LUK and V. E. C. Ooi, Anticancer and antiviral activities of Youngia japonica, (L.) DC (Asteraceae, Compositae), J. Ethnopharmacol., 2004, 94 1, 117–122.

    Article  CAS  PubMed  Google Scholar 

  9. W. Chen Q. Liu J. Wang J. Zou D. Meng J. Zuo X. Zhu and W. Zhao, New guaiane, megastigmane and eudesmane-type sesquiterpenoids and anti-inflammatory constituents from Youngia japonica, Planta Med., 2006, 72 2, 143–150.

    Article  CAS  PubMed  Google Scholar 

  10. S. Taba J. Sawada and Z. Moromizato, Nematicidal activity of Okinawa Island plants on the root-knot nematode Meloidogyne incognita (Kofoid and White) Chitwood, Plant Soil, 2008, 303 1-2, 207–216.

    Article  CAS  Google Scholar 

  11. X. C. Liu Q. Liu X. B. Chen Q. Z. Liu and Z. L. Liu, Larvicidal activity of the essential oil of Youngia japonica aerial parts and its constituents against Aedes albopictus, Z. Naturforsch., C: Biochem., Biophys., Biol., Virol., 2015, 70 1-2, c1–c6 10.1515/znc-2014-4074.

    Article  CAS  Google Scholar 

  12. R. J. Robbins, Phenolic Acids in Foods: An Overview of Analytical Methodology, J. Agric. Food Chem., 2003, 51, 2866–2887.

    Article  CAS  PubMed  Google Scholar 

  13. K. Krak and P. Mráz, Trichomes in the tribe Lactuceae (Asteraceae)—taxonomic implications, Biologia, 2008, 63 5, 616–630.

    Article  Google Scholar 

  14. L. S. Santos H. S. Dariva R. H. Muller O. J. G. Almeida and L. A. Souza, Seedling structure in Asteraceae weedy species: considerationson the vascular system, Braz. J. Bot., 2014, 37 4, 631–635.

    Article  Google Scholar 

  15. H. Smith, Light quality, photo perception, and plant strategy, Ann. Rev. Plant Physiol., 1982, 33, 481–518.

    Article  CAS  Google Scholar 

  16. L. Huché-Thélier L. Crespel J. Le Gourriere P. Morela S. Sakr and N. Leduc, Light signaling and plant responses to blue and UV radiations— Perspectives for applications in horticulture, Environ. Exp. Bot., 2016, 121, 22–38.

    Article  CAS  Google Scholar 

  17. Q. Li and C. Kubota, Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce, Environ. Exp. Bot., 2009, 67 1, 59–64.

    Article  CAS  Google Scholar 

  18. L. B. S. Nascimento M. V. Leal-Costa M. A. S. Coutinho N. S. Moreira C. L. S. Lage N. S. Barbi S. S. Costa and E. S. Tavares, Increased antioxidant activity and changes in phenolic profile of Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) specimens grown under supplemental blue light, Photochem. Photobiol., 2013, 89, 391–399.

    Article  CAS  PubMed  Google Scholar 

  19. A. C. Schuerger C. S. Brown and E. C. Stryjewski, Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light, Ann. Bot., 1997, 79 3, 273–282.

    Article  CAS  PubMed  Google Scholar 

  20. F. Rapparini A. Rotondi and R. Baraldi, Blue light regulation of the growth of Prunus persica plants in a long term experiment: morphological and histological observations, Trees, 1999, 14 3, 169–176.

    Google Scholar 

  21. M. V. Leal-Costa L. B. S. Nascimento N. S. Moreira F. Reinert S. S. Costa C. L. Lage and E. S. Tavares, Influence of blue light on the leaf morphoanatomy of in vitro Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae), Microsc. Microanal., 2010, 16 5, 576–582.

    Article  CAS  PubMed  Google Scholar 

  22. A. F. Macedo M. V. Leal-Costa E. S. Tavares C. L. S. Lage and M. A. Esquibel, The effect of light quality on leaf production and development of in vitro-cultured plants of Alternanthera brasiliana Kuntze, Environ. Exp. Bot., 2011, 70 1, 43–50.

    Article  Google Scholar 

  23. C. P. Victório M. V. Leal-Costa E. S. Tavares R. M. Kuster and C. L. S. Lage, Effects of Supplemental UV-A on the Development, Anatomy and Metabolite Production of Phyllanthus tenellus Cultured In Vitro, Photochem. Photobiol., 2011, 87 3, 685–689.

    Article  PubMed  CAS  Google Scholar 

  24. T. O’Brien N. Feder and M. E. McCully, Polychromatic staining of plant cell walls by toluidine blue O, Protoplasma, 1964, 59 2, 368–373.

    Article  Google Scholar 

  25. D. A. Johansen, Plant microtechnique, McGraw-Hill Book Company, New York-London, 1940

    Google Scholar 

  26. L. M. Casanova D. da Silva M. Sola - Penna L. M. Camargo D. M. Celestrini L. W. Tinoco and S. S. Costa, Identification of chicoric acid as a hypoglycemic agents from Ocimum gratissimum leaf extract in a biomonitoring in vivo study, Fitoterapia, 2014, 93, 132–141.

    Article  CAS  PubMed  Google Scholar 

  27. B. Glowacka, The effect of blue light on the height and habit of the tomato (Lycopersicon esculentum Mill.) transplant, Folia Hortic., 2004, 16 2, 3–10.

    Google Scholar 

  28. A. Wozny and M. Jerzy, Effect of light wavelength on growth and flowering of narcissi forced under short-day and low quantum irradiance conditions, J. Hortic. Sci. Biotechnol., 2007, 82 6, 924–928.

    Article  Google Scholar 

  29. S. Singh, A. Dube and P. Gupta, Fluorescence study of maize irradiated by UVA, Pure Appl. Opt., 7(3), L39.

  30. T. Tezuka T. Hotta and I. Watanabe, Growth promotion of tomato and radish plants by solar UV radiation reaching the Earth’s surface, J. Photochem. Photobiol., B, 1993, 19 1, 61–66.

    Article  Google Scholar 

  31. F. Antonelli D. Grifoni F. Sabatini and G. Zipoli, Morphological and physiological responses of bean plants to supplemental UV radiation in a Mediterranean climate, Plant Ecol., 1997, 128 1-2, 127–136.

    Article  Google Scholar 

  32. S. H. Sarghein J. Carapetian and J. Khara, The effects of UV radiation on some structural and ultrastructural parameters in pepper (Capsicum longum, A. DC.), Turk. J. Biol., 2011, 35, 69–77.

    Google Scholar 

  33. A. Manukyan, Effects of PAR and UV-B radiation on herbal yield, bioactive compounds and their antioxidant capacity of some medicinal plants under controlled environmental conditions, Photochem. Photobiol., 2013, 89 2, 406–414.

    Article  CAS  PubMed  Google Scholar 

  34. M. Veit D. Strack F. Czygan V. Wray and L. Witte, Di-e-caffeoyl-meso-tartaric acid in the barren sprouts of Equisetum arvense, Phytochemistry, 1991, 30 2, 527–529.

    Article  CAS  Google Scholar 

  35. A. P. Sobolev, Elvino Brosio, Raffaella Gianferri and Anna L. Segre, Metabolic profile of lettuce leaves by high-field NMR spectra, Magn. Reson. Chem., 2005, 43, 625–638.

    Article  CAS  PubMed  Google Scholar 

  36. M. Bahri P. Hance S. Grec M. Quillet F. Trotin J. Hilbert and T. Hendriks, A “Novel” Protocol for the Analysis of Hydroxycinnamic Acids in Leaf Tissue of Chicory (Cichorium intybus L., Asteraceae), Sci. World J., 2012, 2012, 142983.

    Article  CAS  Google Scholar 

  37. M. A. Farag S. M. Ezzat M. M. Salama and M. G. Tadros, Anti-acetylcholinesterase potential and metabolome classification of 4 Ocimum species as determined via UPLC/qTOF/MS and chemometrictools, J. Pharm. Biomed. Anal., 2016, 125, 292–302.

    Article  CAS  PubMed  Google Scholar 

  38. B. S. Khoza S. Gbashi P. A. Steenkamp P. B. Njobeh and N. E. Madala, Identification of hydroxylcinnamoyl tartaric acid esters in Bidens pilosa by UPLC-tandem mass spectrometry, S. Afr. J. Bot., 2016, 103, 95–100.

    Article  CAS  Google Scholar 

  39. A. S. Meyer J. L. Donovan D. A. Pearson A. L. Waterhouse and E. N. Frankel, Fruit Hydroxycinnamic Acids Inhibit Human Low-Density Lipoprotein Oxidation in Vitro, J. Agric. Food Chem., 1998, 46, 1783–1787.

    Article  CAS  Google Scholar 

  40. M. C. Búfalo I. Ferreira G. Costa V. Francisco J. Liberal M. T. Cruz M. C. Lopes M. T. Batista and J. M. Sforcin, Propolis and itsconstituent caffeic acid suppress LPS-stimulated pro-inflammatory response by blocking NF-?B andMAPK activation inmacrophages, J. Ethnopharmacol., 2013, 149, 84–92.

    Article  PubMed  CAS  Google Scholar 

  41. E. Fuentes and I. Palomo, Mechanisms of endothelial cell protection by hydroxycinnamic acids, Vasc. Pharmacol., 2014, 63, 155–161.

    Article  CAS  Google Scholar 

  42. M. A. Alam N. Subhan H. Hossain M. Hossain H. M. Reza M. M. Rahman and M. O. Ullah, Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity, Nutr. Metab., 2016, 13–27.

    Google Scholar 

  43. N. Calabriso E. Scoditti M. Massaro M. Pellegrino C. Storelli I. Ingrosso G. Giovinazzo and M. A. Carluccio, Multiple antiinflammatory and antiatherosclerotic properties of red wine polyphenolic extracts: differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression, Eur. J. Nutr., 2016, 55, 477–489.

    Article  CAS  PubMed  Google Scholar 

  44. N. Liang and D. D. Kitts, Role of Chlorogenic Acids in Controlling Oxidative and inflammatory Stress Conditions, Nutrients, 2016, 8 1, 16.

    Article  CAS  Google Scholar 

  45. R. Vinayagam M. Jayachandran and B. Xu, Antidiabetic Effects of Simple Phenolic Acids: A Comprehensive Review, Phytother. Res., 2016, 30, 184–199.

    Article  CAS  PubMed  Google Scholar 

  46. Z. Zhang X. Li Y. Chu M. Zhang Y. Wen C. Duan and Q. Pan, Three types of ultraviolet irradiation differentially promote expression of shikimate pathway genes and production of anthocyanins in grape berries, Plant Physiol. Biochem., 2012, 57, 74–83.

    Article  CAS  PubMed  Google Scholar 

  47. K. Taulavuori V. Hyöky J. Oksanen E. Taulavuori and R. Julkunen-Tiitto, Species-specific differences in synthesis of flavonoids and phenolic acids under increasing periods of enhanced blue light, Environ. Exp. Bot., 2016, 121, 145–150.

    Article  CAS  Google Scholar 

  48. U. J. Jung M. Lee Y. B. Park S. Jeon and M. Choi, Antihyperglycemic and Antioxidant Properties of Caffeic Acid in db/db Mice, J. Pharmacol. Exp. Ther., 2006, 318 2, 476–483.

    Article  CAS  PubMed  Google Scholar 

  49. K. Ikeda K. Tsujimoto M. Uozaki M. Nishide Y. Suzuki A. H. Koyama and H. Yamasaki, Inhibition of multiplication of herpes simplex virus by caffeic acid, International, J. Mol. Med., 2011, 28, 595–598.

    CAS  Google Scholar 

  50. N. R. Prasad A. Karthikeyan S. Karthikeyan and B. V. Reddy, Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line, Mol. Cell. Biochem., 2011, 349, 11–19.

    Article  CAS  Google Scholar 

  51. E. Tsormpatsidis R. G. C. Henbest F. J. Davis N. H. Battey P. Hadley and A. Wagstaffe, UV irradiance as a major influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce ‘Revolution’ grown under polyethylene films, Environ. Exp. Bot., 2008, 63, 232–239.

    Article  CAS  Google Scholar 

  52. G. Agati C. Brunetti M. Di Ferdinando F. Ferrini S. Pollastri and M. Tattini, Functional roles of flavonoids in photoprotection: New evidence, lessons from the past, Plant Physiol. Biochem., 2013, 72, 35–45.

    Article  CAS  PubMed  Google Scholar 

  53. T. Kotilainen R. Tegelberg R. Julkunen-Tiittoz A. Lindfors and P. J. Aphalo, Metabolite specific effects of solar UV-A and UV-B on alder and birch leaf phenolics, Glob. Chang. Biol., 2008, 14, 1–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constantino, L.F.d.S., Nascimento, L.B.d.S., Casanova, L.M. et al. Responses of Crepis japonica induced by supplemental blue light and UV-A radiation. Photochem Photobiol Sci 16, 238–245 (2017). https://doi.org/10.1039/c6pp00343e

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00343e

Navigation