Skip to main content
Log in

Shielding effects in spacious macromolecules: a case study with dendronized polymers

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Dendronized polymers exhibit defined structures with bulky side chains (dendrons) on a linear polymer backbone. Upon reaction with radicals, chromophores close to the backbone were bleached. The reaction rate and yield decreased with increasing dendron size, demonstrating that the inside of dendronized polymers can be “shielded” by bulky dendrons from access by reactive species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. A. D. Schlüter, J. P. Rabe, Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces, and Manipulation, Angew. Chem., Int. Ed., 2000, 39, 864–883.

    Article  Google Scholar 

  2. H. Frauenrath, Dendronized Polymers - Building a New Bridge From Molecules To Nanoscopic Objects, Prog. Polym. Sci., 2005, 30, 325–384.

    Article  CAS  Google Scholar 

  3. M. Marcos, R. Martín-Rapún, A. Omenat, J. L. Serrano, Highly congested liquid crystal structures: dendrimers, dendrons, dendronized and hyperbranched polymers, Chem. Soc. Rev., 2007, 36, 1889–1901.

    Article  CAS  Google Scholar 

  4. J. G. Rudick, V. Percec, Induced helical backbone conformations of self organizable dendronized polymer, Acc. Chem. Res., 2008, 41, 1641–1652.

    Article  CAS  Google Scholar 

  5. A. D. Schlüter, A. Halperin, M. Kröger, D. Vlassopoulos, G. Wegner, B. Zhang, Dendronized Polymers: Molecular Objects between Conventional Linear Polymers and Colloidal Particles, ACS Macro Lett., 2014, 3, 991–998.

    Article  Google Scholar 

  6. Y. Guo, J. D. Van Beek, B. Zhang, M. Colussi, P. Walde, A. Zhang, M. Kröger, A. Halperin, A. D. Schlüter, Tuning Polymer Thickness: Synthesis and Scaling Theory of Homologous Series of Dendronized Polymers, J. Am. Chem. Soc., 2009, 131, 11841–11854.

    Article  CAS  Google Scholar 

  7. B. Zhang, R. Wepf, M. Kröger, A. Halperin, A. D. Schlüter, Height and width of adsorbed dendronized polymers: Electron and atomic force microscopy of homologous series, Macromolecules, 2011, 44, 6785–6792.

    Article  CAS  Google Scholar 

  8. O. Bertran, B. Zhang, A. D. Schlüter, M. Kröger, C. Alemán, Height and width of adsorbed dendronized polymers: Electron and atomic force microscopy of homologous series, J. Phys. Chem. C, 2015, 119, 3746–3753.

    Article  CAS  Google Scholar 

  9. C. Gstrein, B. Zhang, M. Ahmed Abdel-Rahman, O. Bertran, C. Alemán, G. Wegner, A. D. Schlüter, Solvatochromism of dye-labeled dendronized polymers of generation numbers 1-4: comparison to dendrimers, Chem. Sci., 2016, 7, 4644–4652.

    Article  CAS  Google Scholar 

  10. Radiolysis is a reaction of chemicals upon ionizing radiation, usually a degradation.

  11. K.-D. Asmus, G. Beck, A. Henglein, A. Wigger, Pulsradiolytische Untersuchung der Oxydation und Reduktion des Nitrosobenzols in wäßriger Lösung, Ber. Bunsen-Ges. Phys. Chem., 1966, 70, 869–874.

    CAS  Google Scholar 

  12. Alternatively to the reduction, also a radical addition to the nitro group is possible.13 Our data and interpretation do not depend on the exact mechanism as both reactions will cause bleaching of the chromophore.

  13. V. Jagannadham, S. Steenken, One-electron reduction of nitrobenzenes by alpha-hydroxyalkyl radicals via addition/elimination. An example of an organic inner-sphere electron-transfer reaction, J. Am. Chem. Soc., 1984, 106, 6542–6551.

    Article  CAS  Google Scholar 

  14. T. Nauser, G. Casi, W. H. Koppenol, C. Schöneich, Reversible intramolecular hydrogen transfer between cysteine thiyl radicals and amino acids in model peptides: absolute rate constants derived from pulse radiolysis and laser flash photolysis, J. Phys. Chem. B, 2008, 112, 15034–15044.

    Article  CAS  Google Scholar 

  15. T. Nauser, A. Carreras, Carbon-centered radicals add reversibly to histidine - implications, Chem. Commun., 2014, 50, 14349–14351.

    Article  CAS  Google Scholar 

  16. It is to be stressed that such experiments are only meaningful with a uniform and well-characterized homologous series of denpols.

  17. B. Zhang, R. Wepf, K. Fischer, M. Schmidt, S. Besse, P. Lindner, B. T. King, R. Sigel, P. Schurtenberger, Y. Talmon, Y. Ding, M. Kröger, A. Halperin, A. D. Schlüter, The Largest Synthetic Structure with Molecular Precision: Towards a Molecular Object, Angew. Chem., Int. Ed., 2011, 50, 737–740.

    Article  CAS  Google Scholar 

  18. PG3 and l-PG3 are not part of a strictly homologous series. In fact they differ in the chain length and polydispersity index (PDI) (n ofPG3 ≈ 650, n of l-PG3 ≈ 700, see Table S1). Their different initial responses on exposure to iPrOH (0-10 μs after pulse) may originate from such physical differences.

  19. It is also conceivable that iPrOH may add to the nitro group of the chromophore before reduction.13 Such an addition process would favour repair in the bulk solution even more.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Nauser.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c6pp00191b.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gstrein, C., Walde, P., Schlüter, A.D. et al. Shielding effects in spacious macromolecules: a case study with dendronized polymers. Photochem Photobiol Sci 15, 964–968 (2016). https://doi.org/10.1039/c6pp00191b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00191b

Navigation