Skip to main content
Log in

Facile preparation of N-doped TiO2 at ambient temperature and pressure under UV light with 4-nitrophenol as the nitrogen source and its photocatalytic activities

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

To date syntheses of nitrogen-doped TiO2 photocatalysts (TiO2−xNx) have been carried out under high temperatures and high pressures with either NH3 or urea as the nitrogen sources. This article reports for the first time the facile preparation of N-doped TiO2 (P25 titania) in aqueous media at ambient temperature and pressure under inert conditions (Ar- and N2-purged dispersions) with 4-nitrophenol (or 4-nitrobenzaldehyde) as the nitrogen source. The resulting N-doped P25 TiO2 materials were characterized by UV/Vis and X-ray photoelectron spectroscopies (XPS) that confirmed the presence of nitrogen within the photocatalyst; X-ray diffraction (XRD) techniques confirmed the crystalline phases of the doped material. The photocatalytic activity of N-doped TiO2 was assessed through examining the photodegradation of 4-chlorophenol in aqueous media and iso-propanol as a volatile pollutant under UV/Vis and visible-light irradiation. Under visible light irradiation, undoped P25 was inactive contrary to N-doped P25 that successfully degraded 95% of the 4-chlorophenol (after 10 h) and 23% of iso-propanol (after 2.5 h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. K. Nakata, A. Fujishima, TiO2 photocatalysis: Design and applications, J. Photochem. Photobiol., C, 2012, 13, 169–189.

    Article  CAS  Google Scholar 

  2. J. Zhan, X. Yang, Photocatalytic oxidation for indoor air purification: a literature review, Build. Environ., 2003, 38, 645–654.

    Article  Google Scholar 

  3. C. Mccullagh, J. M. C. Robertson, D. W. Bahnemann, P. K. J. Robertson, The application of TiO2 photocatalysis for disinfection of water contaminated with pathogenic micro-organisms: a review, Res. Chem. Intermed., 2007, 33, 359–375.

    Article  CAS  Google Scholar 

  4. T. N. Obee, R. T. Brown, TiO2 Photocatalysis for Indoor Air Applications: Effects of Humidity and Trace Contaminant Levels on the Oxidation Rates of Formaldehyde, Toluene, and 1,3-Butadiene, Environ. Sci. Technol., 1995, 29, 1223–1231.

    Article  CAS  PubMed  Google Scholar 

  5. A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 1972, 238, 37–38.

    Article  CAS  PubMed  Google Scholar 

  6. N. Serpone, D. Lawless, R. Terzian and D. Meisel, Redox Mechanisms in Heterogeneous Photocatalysis. The Case of Holes vs. OH Radical Oxidation and Free vs. Surface-Bound OH Radical Oxidation Processes, in Electrochemistry in Colloids and Dispersions, R. McKay and J. Texter, VCH Publishers, New York, 1992, pp. 399–416.

    Google Scholar 

  7. K. Hashimoto, H. Irie, A. Fujishima, TiO2 Photocatalysis: A Historical Overview and Future Prospects, Jpn. J. Appl. Phys., Part 1, 2005, 44, 8269–8285

    Article  CAS  Google Scholar 

  8. L. Liu, Y. Li, Understanding the Reaction Mechanism of Photocatalytic Reduction of CO2 with H2O on TiO2-Based Photocatalysts: A Review, Aerosol Air Qual. Res., 2014, 14, 453–469

    Article  CAS  Google Scholar 

  9. H. Xu, S. Ouyang, L. Liu, P. Reunchan, N. Umezawa, J. Ye, Recent advances in TiO2-based photocatalysis, J. Mater. Chem. A, 2014, 2, 12642–12661.

    Article  CAS  Google Scholar 

  10. N. Serpone, A. V. Emeline, S. Horikoshi, V. N. Kuznetsov, V. K. Ryabchuk, On the genesis of heterogeneous photocatalysis: a brief historical perspective in the period 1910 to the mid-1980s, Photochem. Photobiol. Sci., 2012, 11, 1121–1150.

    Article  CAS  PubMed  Google Scholar 

  11. S.-M. Chang, W.-S. Liu, The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts, Appl. Catal., B, 2014, 156/157, 466–475.

    Article  CAS  Google Scholar 

  12. N. Serpone, A. V. Emeline, V. N. Kuznetsov and V. K. Ryabchuk, Second Generation Visible-Light-Active Photocatalysts: Preparation, Optical Properties, and Consequences of Dopants on the Band Gap Energy of TiO2, in Environmentally Benign Photocatalysts, M. Anpo and P. V. Kamat, Springer, 2010, ch. 3, pp. 35–111.

    Chapter  Google Scholar 

  13. A. Tanaka, K. Hashimoto, H. Kominami, Visible-Light-Induced Hydrogen and Oxygen Formation over Pt/Au/WO3 Photocatalyst Utilizing Two Types of Photoabsorption Due to Surface Plasmon Resonance and Band-Gap Excitation, J. Am. Chem. Soc., 2014, 136, 586–589.

    Article  CAS  PubMed  Google Scholar 

  14. C. Minero, G. Mariella, V. Maurino, E. Pelizzetti, Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Anions. 1. Hydroxyl-Mediated and Direct Electron-Transfer Reactions of Phenol on a Titanium Dioxide-Fluoride System, Langmuir, 2000, 16, 2632–2641.

    Article  CAS  Google Scholar 

  15. V. Etacheri, C. di Valentin, J. Schneider, D. Bahnemann, S. C. Pillai, Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments, J. Photochem. Photobiol., C, 2015, 25, 1–29.

    Article  CAS  Google Scholar 

  16. R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Nitrogen-Doped Titanium Dioxide as Visible-Light-Sensitive Photocatalyst: Designs, Developments, and Prospects, Chem. Rev., 2014, 114, 9824–9852.

    Article  CAS  PubMed  Google Scholar 

  17. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science, 2001, 293, 269–271.

    Article  CAS  PubMed  Google Scholar 

  18. T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki, Y. Taga, Band-Gap Narrowing of Titanium Dioxide by Nitrogen Doping, Jpn. J. Appl. Phys., Part 2, 2001, 40, L561–L562.

    Article  CAS  Google Scholar 

  19. L. Mohan, C. Anandan, N. Rajendran, Effect of plasma nitriding on structure and biocompatibility of self-organised TiO2 nanotubes on Ti-6Al-7Nb, RSC Adv., 2015, 5, 41763–41771

    Article  CAS  Google Scholar 

  20. M. Maeda, T. Yamada, T. Watanabe, Photocatalytic Properties of Plasma-Nitrided TiO2 Films, J. Electrochem. Soc., 2007, 154, P29–P31

    Article  CAS  Google Scholar 

  21. J. D. Houmes, H.-C. zur Loye, Plasma Nitridation of Metal Oxides, Chem. Mater., 1996, 8, 2551–2553.

    Article  CAS  Google Scholar 

  22. K. Matsubara, M. Danno, M. Inoue, Y. Honda, T. Abe, Characterization of nitrogen-doped TiO2 powder prepared by newly developed plasma-treatment system, Chem. Eng. J., 2012, 181, 754–760.

    Article  CAS  Google Scholar 

  23. S. Yin, Q. W. Zhang, F. Saito, T. Saito, Preparation of Visible Light-Activated Titania Photocatalyst by Mechanochemical Method, Chem. Lett., 2003, 32, 358–359.

    Article  CAS  Google Scholar 

  24. S. Yin, H. Yamaki, M. Komatsu, Q. W. Zhang, J. S. Wang, Q. Tang, F. Saito, T. Saito, Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylene-tetramine, J. Mater. Chem., 2003, 13, 2996–3001.

    Article  CAS  Google Scholar 

  25. C. Chen, H. Bai, S.-M. Chang, C. Chang, W. Den, Preparation of N-doped TiO2 photocatalyst by atmospheric pressure plasma process for VOCs decomposition under UV and visible light sources, J. Nanopart. Res., 2007, 9, 365–375.

    Article  CAS  Google Scholar 

  26. Y. C. Hong, J. H. Kim, C. U. Bang, H. S. Uhm, Gas-phase synthesis of nitrogen-doped TiO2 nanorods by microwave plasma torch at atmospheric pressure, Phys. Plasmas, 2005, 12, 114501.

    Article  CAS  Google Scholar 

  27. C. di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, Characterization of Paramagnetic Species in N-Doped TiO2 Powders by EPR Spectroscopy and DFT Calculations, J. Phys. Chem. B, 2005, 109, 11414–11419.

    Article  PubMed  CAS  Google Scholar 

  28. R. Asahi, T. Morikawa, Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis, Chem. Phys., 2007, 339, 57–63.

    Article  CAS  Google Scholar 

  29. B. Bhushan, A. Chauhan, S. K. Samanta, R. K. Jain, Kinetics of Biodegradation of p-Nitrophenol by Different Bacteria, Biochem. Biophys. Res. Commun., 2000, 274, 626–630.

    Article  CAS  PubMed  Google Scholar 

  30. Q. Xiang, J. Yu, M. Jaroniec, Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity, Phys. Chem. Chem. Phys., 2011, 13, 4853–4861

    Article  CAS  PubMed  Google Scholar 

  31. N. Todorova, T. Vaimakis, D. Petrakis, S. Hishita, N. Boukos, T. Giannakopoulou, M. Giannouri, S. Antiohos, D. Papageorgiou, E. Chaniotakis, C. Trapalis, N- and N,S-doped TiO2 photocatalysts and their activity in NO x oxidation, Catal. Today, 2013, 209, 41–46.

    Article  CAS  Google Scholar 

  32. S. Horikoshi, Y. Minatodani, H. Sakai, M. Abe, N. Serpone, Characteristics of microwaves on second generation nitrogen-doped TiO2 nanoparticles and their effect on photoassisted processes, J. Photochem. Photobiol., A, 2011, 217, 191–200.

    Article  CAS  Google Scholar 

  33. V. N. Kuznetsov, A. V. Emeline, N. I. Glazkova, R. V. Mikhaylov, N. Serpone, Real-Time in Situ Monitoring of Optical Absorption Changes in Visible-Light-Active TiO2 under Light Irradiation and Temperature-Programmed Annealing, J. Phys. Chem. C, 2014, 118, 27583–27593.

    Article  CAS  Google Scholar 

  34. V. N. Kuznetsov, A. V. Emeline, A. V. Rudakova, M. S. Aleksandrov, N. I. Glazkova, L. A. Lovtcius, G. V. Kataeva, R. V. Mikhaylov, V. K. Ryabchuk, N. Serpone, Visible-NIR Light Absorption of Titania Thermochemically Fabricated from Titanium and its Alloys; UV- and Visible-Light-Induced Photochromism of Yellow Titania, J. Phys. Chem. C, 2013, 117, 25852–25864.

    Article  CAS  Google Scholar 

  35. V. N. Kuznetsov, N. Serpone, On the Origin of the Spectral Bands in the Visible Absorption Spectra of Visible-Light-Active TiO2 Specimens Analysis and Assignments, J. Phys. Chem. C, 2009, 113, 15110–15123.

    Article  CAS  Google Scholar 

  36. A. V. Emeline, V. N. Kuznetsov, V. K. Ryabchuk, N. Serpone, Visible-Light-Active Titania Photocatalysts: The Case of N-Doped TiO2s-Properties and Some Fundamental Issues, Int. J. Photoenergy, 2008, 2008, 258394.

    Article  Google Scholar 

  37. V. N. Kuznetsov, N. Serpone, Photoinduced Coloration and Photobleaching of Titanium Dioxide in TiO2/Polymer Compositions upon UV- and Visible-Light Excitation of Color Centers’ Absorption Bands: Direct Experimental Evidence Negating Band-Gap Narrowing in Anion-/Cation-Doped TiO2s, J. Phys. Chem. C, 2007, 111, 15277–15288.

    Article  CAS  Google Scholar 

  38. V. N. Kuznetsov, N. Serpone, Visible Light Absorption by Various Titanium Dioxide Specimens, J. Phys. Chem. B, 2006, 110, 25203–25209.

    Article  CAS  PubMed  Google Scholar 

  39. H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2− xNx Powders, J. Phys. Chem. B, 2003, 107, 5483–5486.

    Article  CAS  Google Scholar 

  40. A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev., 1995, 95, 735–758.

    Article  CAS  Google Scholar 

  41. M. M. Haque, D. Bahnemann and M. Muneer, Photocatalytic Degradation of Organic Pollutants: Mechanisms and Kinetics, in Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update, T. Puzyn and A. Mostrang-Szlichtyng, InTech Europe, Rijeka, Croatia, 2012, ch. 12, pp. 293–326.

    Google Scholar 

  42. See also: http://cdn.intechopen.com/pdfs/29378/InTech-Photocatalytic_degradation_of_organic_pollutants_mechanisms_and_kinetics.pdf. (accessed March 2016).

  43. A. Ajmal, I. Majeed, R. N. Malik, H. Idriss, M. A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2-based photocatalysts: a comparative overview, RSC Adv., 2014, 4, 37003–37026.

    Article  CAS  Google Scholar 

  44. J. Schneider, M. Matsuka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Understanding TiO2 Photo-catalysis: Mechanisms and Materials, Chem. Rev., 2014, 114, 9919–9986.

    Article  CAS  PubMed  Google Scholar 

  45. C. Chen, W. Zhao, P. Lei, J. Zhao, N. Serpone, Photo-sensitized Degradation of Dyes in Polyoxometalate Solutions Versus TiO2 Dispersions under Visible-Light Irradiation: Mechanistic Implications, Chem. - Eur. J., 2004, 10, 1956–1965.

    Article  CAS  PubMed  Google Scholar 

  46. C. Chen, W. Zhao, J. Li, J. Zhao, H. Hidaka, N. Serpone, Formation and Identification of Intermediates in the Visible-Light-Assisted Photodegradation of Sulforhodamine-B Dye in Aqueous TiO2 Dispersion, Environ. Sci. Technol., 2002, 36, 3604–3611.

    Article  CAS  PubMed  Google Scholar 

  47. C. Chen, X. Li, W. Ma, J. Zhao, H. Hidaka, N. Serpone, Effect of Transition Metal Ions on the TiO2-Assisted Photodegradation of Dyes under Visible Irradiation: A Probe for the Interfacial Electron Transfer Process and Reaction Mechanism, J. Phys. Chem. B, 2002, 106, 318–324.

    Article  CAS  Google Scholar 

  48. T. Zhang, T. Oyama, S. Horikoshi, H. Hidaka, J. Zhao, N. Serpone, Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions exposed to concentrated sunlight, Sol. Energy Mater. Sol. Cells, 2002, 73, 287–303.

    Article  CAS  Google Scholar 

  49. T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, N. Serpone, Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation, J. Photochem. Photobiol., A, 2001, 140, 163–172.

    Article  CAS  Google Scholar 

  50. G. Liu, X. Z. Li, J. Zhao, H. Hidaka, N. Serpone, Photo-oxidation Pathway of Sulforhodamine-B. Dependence on the Adsorption Mode on TiO2 Exposed to Visible Light Radiation, Environ. Sci. Technol., 2000, 34, 3982–3990.

    Article  CAS  Google Scholar 

  51. A. V. Emeline, G. N. Kuzmin, N. Serpone, Wavelength-dependent photostimulated adsorption of molecular O2 and H2 on second generation titania photocatalysts: The case of the visible-light-active N-doped TiO2 system, Chem. Phys. Lett., 2008, 454, 279–283.

    Article  CAS  Google Scholar 

  52. A. V. Emeline, N. V. Sheremetyeva, N. V. Khomchenko, V. K. Ryabchuk, N. Serpone, Photoinduced Formation of Defects and Nitrogen Stabilization of Color Centers in N-Doped Titanium Dioxide, J. Phys. Chem. C, 2007, 111, 11456–11462.

    Article  CAS  Google Scholar 

  53. N. Serpone, Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts?, J. Phys. Chem. B, 2006, 110, 24287–24293.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satoshi Horikoshi or Nick Serpone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horikoshi, S., Shirasaka, Y., Uchida, H. et al. Facile preparation of N-doped TiO2 at ambient temperature and pressure under UV light with 4-nitrophenol as the nitrogen source and its photocatalytic activities. Photochem Photobiol Sci 15, 1061–1070 (2016). https://doi.org/10.1039/c6pp00167j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00167j

Navigation