Skip to main content
Log in

The photophysics of phenylenevinylene oligomers and self-absorption of their fluorescence in polymer films

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The fluorescence spectra, quantum yields and lifetimes of a series of alkoxy-substituted phenylenevinylene molecules, which serve as short chain oligomer models for poly(p-phenylenevinylene), have been determined in fluid solvents and in a high viscosity polymer matrix. The effects of solvent polarity and a high viscosity molecular environment on the fluorescence yields and spectral shapes have been established. Alkoxy group substitution on the phenyl ring moieties of the molecules has an important effect on the vibronic structures and profiles of the absorption spectra. This was interpreted in terms of hot-band, ground to excited singlet state transitions from energetically closely-spaced torsional vibrational levels of the vinylene double bond in the ground state. The shapes of the absorption bands affect the overlaps of the absorption and fluorescence spectra. This has been quantified as the probability of fluorescence reabsorption in solid polymer films as a function of pathlength. This is an important determinant of the efficacies of these compounds for “harvesting” solar energy in luminescent solar concentrator systems. The reabsorption probabilities of these compounds are lower for all pathlengths than those determined in the same polymer film for the fluorophores, perylene and perylene diimide, which have been considered for concentrating spatially diffuse sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Spanggaard, F. Krebs, A brief history of the development of organic and polymeric photovoltaics, Sol. Energy Mater. Sol. Cells, 2004, 83, 125.

    Article  CAS  Google Scholar 

  2. A. J. Tilley, S. M. Danczak, C. Browne, T. Young, T. Tau, K. P. Ghiggino, T. A. Smith, J. White, Synthesis and fluorescence characterization of MEH-PPV oligomers, J. Org. Chem., 2011, 76, 3372.

    Article  CAS  Google Scholar 

  3. J. Brédas, D. Bejonne, V. Coropceanu, J. Cornil, Charge-transfer and energy-transfer processes in p-conjugated oligomers and polymers, Chem. Rev., 2004, 104, 4971.

    Article  Google Scholar 

  4. K. P. Ghiggino, T. D. M. Bell, E. N. Hooley, Synthetic polymers for solar harvesting, Faraday Discuss., 2012, 155, 12.

    Article  Google Scholar 

  5. J. Gierschner, S. Y. Park, Luminescent distyrylbenzenes: tailoring molecular structure and crystalline morphology, J. Mater. Chem. C, 2013, 1, 5818.

    Article  CAS  Google Scholar 

  6. M. G. Debije, P. C. Verbunt, Thirty years of luminescent solar concentrator research: solar energy for the built environment, Adv. Energy Mater., 2012, 2, 12.

    Article  CAS  Google Scholar 

  7. A. Goetzberger, Fluorescent solar energy collectors: operating conditions with diffuse light, Appl. Phys., 1978, 16, 399.

    Article  CAS  Google Scholar 

  8. M. Carracosa, S. Unamuno, F. Agullo-Lopez, Monte Carlo simulation of the performance of PMMA luminescent solar collectors, Appl. Opt., 1983, 22, 3236.

    Article  Google Scholar 

  9. C. J. Collison, L. J. Rothberg, V. Treemaneekarn, Y. Li, Conformational effects on the photophysics of conjugated polymers: a model for MEH-PPV spectroscopy and dynamics, Macromolecules, 2001, 34, 2346.

    Article  CAS  Google Scholar 

  10. E. C. Chang, C. I. Chao, R. H. Lee, Enhancing the efficiency of MEH-PPV and PCBM polymer cells via optimization of device configuration and processing conditions, Appl. Polym. Sci., 2006, 101, 1919.

    Article  CAS  Google Scholar 

  11. G. Orlandi, W. Siebrand, A model for the direct photoisomerization of stilbene, Chem. Phys. Lett., 1975, 30, 352.

    Article  CAS  Google Scholar 

  12. J. Saltiel, J. D. Agnostina, E. D. Megarity, L. Metts, K. R. Neuberger, M. Wrighton, and O. C. Zafiriou, The cis-trans photoisomerization of olefins, in Organic Photochemistry, ed. O. L. Chapman, Marcel Dekker, New York, 1973, vol. 3, p. 1.

    CAS  Google Scholar 

  13. A. A. Heikal, J. S. Baskin, L. Benares, A. H. Zewail, Structural effects on the isomerization dynamics of trans-stilbenes: microcanonical reaction rates and the nature of the transition state, J. Phys. Chem., 1997, 101, 572.

    Article  CAS  Google Scholar 

  14. M. T. Allen, D. G. Whitten, The photophysics and photochemistry of α,ω-diphenylpolyene singlet states, Chem. Rev., 1989, 89, 1691.

    Article  CAS  Google Scholar 

  15. M. D. H. Bhuiyan, N. W. Winch, G. J. Smith, R. D. Breukers, S. G. Raymond, A. J. Kay, T. A. Smith, Tunable phenylenevinylene dimer and trimer molecules for light harvesting antennas, Proc. SPIE, 2014, 9140, 141.

    Google Scholar 

  16. G. A. Reynolds, K. H. Drexhage, New coumarin dyes with rigidized structures for flashlamp-pumped dye lasers, Opt. Commun., 1975, 13, 222.

    Article  CAS  Google Scholar 

  17. T. Ahn, R. O. Al-Kaysi, A. M. Müller, K. M. Wentze, C. J. Bardeen, Self-absorption correction for solid state photoluminescence quantum yields obtained from integrating sphere measurements, Rev. Sci. Instrum., 2007, 78, 086105.

    Article  Google Scholar 

  18. K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, S. Tobita, Reevaluation of absolute luminescence quantum yields of standard solutions, Phys. Chem. Chem. Phys., 2009, 11, 9850.

    Article  CAS  Google Scholar 

  19. J. C. De Mello, H. F. Wittmann, R. H. Friend, Improved experimental determination of external photoluminescence quantum efficiency, Adv. Mater., 1997, 9, 230.

    Article  Google Scholar 

  20. L.-O. Palsson, A. P. Monkton, Measurements of solid-state photoluminescence quantum yields of films, Adv. Mater., 2002, 14, 757.

    Article  CAS  Google Scholar 

  21. L. R. Bradshaw, K. E. Knowles, S. McDowall, D. R. Gaelin, Nanocrystals for luminescent solar concentrators, Nano Lett., 2015, 15, 1315.

    Article  CAS  Google Scholar 

  22. J. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience, London, 1970.

    Google Scholar 

  23. A. J. Tilley, M. Chen, S. M. Danczak, K. P. Ghiggino, J. M. White, Electronic energy transfer in pendant MEH-PPV polymers, Polym. Chem., 2012, 3, 892.

    Article  CAS  Google Scholar 

  24. K. P. Ghiggino, A. J. Tilley, B. Robotham, J. M. White, Excited state dynamics of organic semi-conducting materials, Faraday Discuss., 2015, 177, 111.

    Article  CAS  Google Scholar 

  25. J. Gierscher, H. G. Mack, L. Lüer, D. Oelkrug, Fluorescence and absorption spectra of oligophenylene vinylenes: vibronic coupling and band shapes, J. Chem. Phys., 2002, 116, 8596.

    Article  Google Scholar 

  26. S. T. Hoffman, H. Bässler, A. Köhler, What determines inhomegeneous broadening of electronic transitions in conjugated polymers, J. Phys. Chem. B, 2010, 114, 17037.

    Article  Google Scholar 

  27. G. D. Gutierrez, I. Coropceanu, M. G. Bawendi, M. Swager, A low reabsorbing luminescent solar concentrator employing p-conjugated polymers, Adv. Mater., 2016, 28, 497.

    Article  CAS  Google Scholar 

  28. H. Zhou, R. Lu, X. Zhao, X. Qiu, P. Xue, X. Zhang, Synthesis and photophysical properties of monodisperse oligo (9,9-di-n-octylfluorene-2,7-vinylene)s functionalized anthracenes, Tetrahedron Lett., 2010, 51, 5287.

    Article  CAS  Google Scholar 

  29. Q. Liu, W. Liu, B. Yao, H. Tian, Z. Xie, Y. Geng, F. Wang, Synthesis and chain-length dependant properties of monodisperse oligo (9,9-di-n-octylfluorene-2,7-vinylene)s, Macromolecules, 2007, 40, 1851.

    Article  CAS  Google Scholar 

  30. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, M. A. Baldo, High efficiency organic solar concentrators for photovoltaics, Science, 2008, 321, 226.

    Article  CAS  Google Scholar 

  31. M. Debije, Better luminescent panels in prospect, Nature, 2015, 519, 298.

    Article  CAS  Google Scholar 

  32. R. E. Di Paolo, H. D. Burrows, J. Morgado, A. L. Maçanita, Photodynamics of a PV trimer in high viscosity solvents and in PMMA: a new insight into energy transfer versus conformational relaxation in conjugated polymers, ChemPhysChem, 2009, 10, 448.

    Article  Google Scholar 

  33. A. M. Galvao, R. E. Di Paolo, A. L. Maçanita, K. R. Naqvi, Model for conformational relaxation of flexible polymers: application to phenylene trimers in nonpolar solvents, ChemPhysChem, 2013, 14, 583.

    Article  CAS  Google Scholar 

  34. C. Haines, M. Chen, K. P. Ghiggino, The effect of perylene diimide aggregation on the light collection efficiency of luminescent concentrators, Sol. Energy Mater. Sol. Cells, 2012, 105, 287.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald J. Smith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winch, N.M., Smith, G.J., Breukers, R.D. et al. The photophysics of phenylenevinylene oligomers and self-absorption of their fluorescence in polymer films. Photochem Photobiol Sci 15, 1163–1169 (2016). https://doi.org/10.1039/c6pp00127k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00127k

Navigation