Issue 6, 2016

Optical phonons in methylammonium lead halide perovskites and implications for charge transport

Abstract

Lead-halide perovskites are promising materials for opto-electronic applications. Recent reports indicated that their mechanical and electronic properties are strongly affected by the lattice vibrations. Herein we report far-infrared spectroscopy measurements of CH3NH3Pb(I/Br/Cl)3 thin films and single crystals at room temperature and a detailed quantitative analysis of the spectra. We find strong broadening and anharmonicity of the lattice vibrations for all three halide perovskites, which indicates dynamic disorder of the lead-halide cage at room temperature. We determine the frequencies of the transversal and longitudinal optical phonons, and use them to calculate, via appropriate models, the static dielectric constants, polaron masses, electron–phonon coupling constants, and upper limits for the phonon-scattering limited charge carrier mobilities. Within the limitations of the model used, we can place an upper limit of 200 cm2 V−1 s−1 for the room temperature charge carrier mobility in MAPbI3 single crystals. Our findings are important for the basic understanding of charge transport processes and mechanical properties in metal halide perovskites.

Graphical abstract: Optical phonons in methylammonium lead halide perovskites and implications for charge transport

Supplementary files

Article information

Article type
Communication
Submitted
29 Jul 2016
Accepted
07 Oct 2016
First published
07 Oct 2016
This article is Open Access
Creative Commons BY license

Mater. Horiz., 2016,3, 613-620

Optical phonons in methylammonium lead halide perovskites and implications for charge transport

M. Sendner, P. K. Nayak, D. A. Egger, S. Beck, C. Müller, B. Epding, W. Kowalsky, L. Kronik, H. J. Snaith, A. Pucci and R. Lovrinčić, Mater. Horiz., 2016, 3, 613 DOI: 10.1039/C6MH00275G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements