Issue 71, 2015

Selective removal of nitroaromatic compounds from wastewater in an integrated zero valent iron (ZVI) reduction and ZVI/H2O2 oxidation process

Abstract

In this study, an integrated system comprised of zero-valent iron (ZVI) reduction and ZVI-based Fenton oxidation processes (ZVI-ZVI/H2O2) was applied for the selective removal of nitroaromatic compounds (NACs) from 2,4-dinitroanisole (DNAN) producing wastewater. For the ZVI reduction process, at a hydraulic retention time (HRT) of 6 h and neutral pH of 7.2, removal efficiencies of 2,4-dinitroanisole (DNAN), 2,4-dinitrophenol (DNP) and 2,4-dinitrochlorobenzene (DNCB) were as high as 81.3 ± 3.6%, 80.6 ± 1.8% and 90.9 ± 3.5%, respectively, demonstrating the excellent performance of ZVI. For the ZVI/H2O2 oxidation process, the optimal pH and H2O2 dosage were found to be 3.0 and 100 mmol L−1, respectively. Under these optimal conditions, NACs and their degradation intermediates could be removed selectively and effectively in the coupled ZVI reduction and ZVI/H2O2 oxidation process, as was indicated by the low UV254 value of 0.104 ± 0.003 and the low TOC removal efficiency of 32.4 ± 0.7% in the effluent. Ferrous ions could be generated in situ through the corrosion of the metal iron in both the ZVI reduction process and the ZVI/H2O2 oxidation process, giving rise to a potent Fenton-type reaction. In addition, the enhanced Fenton reaction with the aid of reaction between Fe0 and Fe3+ was probably due to the presence of Fe0 in the ZVI/H2O2 oxidation process, which promoted the utilization efficiency of the Fenton catalyst, i.e., Fe2+. Compared to the sequential ZVI reduction and homogeneous Fenton oxidation process (ZVI-Fe2+/H2O2), the low consumption of iron shavings, the reduced H2O2 consumption and the low yield of ferric sludge made the integrated ZVI-ZVI/H2O2 process promising for the treatment of NAC containing wastewater.

Graphical abstract: Selective removal of nitroaromatic compounds from wastewater in an integrated zero valent iron (ZVI) reduction and ZVI/H2O2 oxidation process

Supplementary files

Article information

Article type
Paper
Submitted
07 May 2015
Accepted
25 Jun 2015
First published
25 Jun 2015

RSC Adv., 2015,5, 57444-57452

Author version available

Selective removal of nitroaromatic compounds from wastewater in an integrated zero valent iron (ZVI) reduction and ZVI/H2O2 oxidation process

J. Liu, C. Ou, W. Han, Faheem, J. Shen, H. Bi, X. Sun, J. Li and L. Wang, RSC Adv., 2015, 5, 57444 DOI: 10.1039/C5RA08487C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements