Skip to main content

Advertisement

Log in

Tuning the concentration of dye loaded polymer films for maximum photosensitization efficiency: phloxine B in poly(2-hydroxyethyl methacrylate)

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Fluorescence and singlet molecular oxygen (1O2) quantum yields for phloxine B loaded poly(2-hydroxyethyl methacrylate) thin films are determined at dye concentrations from 0.015 to 22 wt%. Fluorescence self-quenching and the fall off of the 1O2 quantum yield observed above 0.1 wt% are attributed to very weakly interacting close-lying dye molecules acting as energy traps arising from molecular confinement. The maximum singlet oxygen generation efficiency (quantum yield × absorption factor) lies at concentrations around 2 wt%, where fluorescence self quenching amounts to more than 80%. Data are fitted quantitatively by using a quenching radius model involving energy migration and trapping with rQ = 1.2 nm. The present results constitute a proof of concept for the rational design of heterogeneous photosensitizers in general and, particularly, for applications in which the antimicrobial activity of singlet oxygen is central.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Baldini, A. N. Chester, J. Homola and S. Martellucci, Optical Chemical Sensors, Springer, Dordrecht, 2006.

    Book  Google Scholar 

  2. Y. Huang, S.-T. Wu, Multi-Wavelength Laser from Dye-Doped Cholesteric Polymer Films, Opt. Express, 2010, 18, 27697–27702.

    Article  CAS  Google Scholar 

  3. S. Kawata and Y. Kawata, Three-Dimensional Optical Data Storage Using Photochromic Materials, Chem. Rev., 2000, 100, 1777–1788.

    Article  CAS  Google Scholar 

  4. R. Waning and S. Muke, Authentication Means. PCT Int. Pat., WO2004087430, 2004.

    Google Scholar 

  5. H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina and A. Rothschild, Resonant Light Trapping in Ultrathin Films for Water Splitting, Nat. Mater., 2013, 12, 158–164.

    Article  CAS  Google Scholar 

  6. M. Nowakowska, M. Kepczynski and K. Szczubialka, New Polymeric Photosensitizers, Pure Appl. Chem., 2001, 73, 491–495.

    Article  CAS  Google Scholar 

  7. A. Priimagi, S. Cattaneo, R. H. A. Ras, S. Valkama, O. Ikkala and M. Kauranen, Polymer-Dye Complexes: A Facile Method for High Doping Level and Aggregation Control of Dye Molecules, Chem. Mater., 2005, 17, 5798–5802.

    Article  CAS  Google Scholar 

  8. S. G. López, G. Worringer, H. B. Rodríguez, E. San Román, Trapping of Rhodamine 6G Excitation Energy on Cellulose Microparticles, Phys. Chem. Chem. Phys., 2010, 12, 2246–2253.

    Article  Google Scholar 

  9. M. Mirenda, C. A. Strassert, L. E. Dicelio, E. San Román, Dye-Polyelectrolyte Layer-by-Layer Self-Assembled Materials: Molecular Aggregation, Structural Stability, and Singlet Oxygen Photogeneration, ACS Appl. Mater. Interfaces, 2010, 2, 1556–1560.

    Article  CAS  Google Scholar 

  10. A. Opdahl, S. H. Kim, T. S. Koffas, C. Marmo and G. A. Somorjai, Surface Mechanical Properties of pHEMA Contact Lenses: Viscoelastic and Adhesive Property Changes on Exposure to Controlled Humidity, J. Biomed. Mater. Res., Part A, 2003, 67, 350–356.

    Article  Google Scholar 

  11. C. Maldonado-Codina and N. Efron, Dynamic Wettability of pHEMA-Based Hydrogel Contact Lenses, Ophthal. Physiol. Opt., 2006, 26, 408–418.

    Article  Google Scholar 

  12. E. Gandin, Y. Lion, A. Van de Vorst, Quantum Yield of Singlet Oxygen Production by Xanthene Derivatives, Photochem. Photobiol., 1983, 37, 271–278.

    Article  CAS  Google Scholar 

  13. P. Duarte, D. P. Ferreira, I. Ferreira Machado, L. F. Vieira Ferreira, H. B. Rodríguez, E. San Román, Phloxine B as a Probe for Entrapment in Microcrystalline Cellulose, Molecules, 2012, 17, 1602–1616.

    Article  CAS  Google Scholar 

  14. A. Rasooly and A. Weisz, In Vitro Antibacterial Activities of Phloxine B and Other Halogenated Fluoresceins Against Methicillin-Resistant Staphylococcus aureus, Antimicrob. Agents Chemother., 2002, 46, 3650–3653.

    Article  CAS  Google Scholar 

  15. R. Rasooly, Expanding the Bactericidal Action of the Food Color Additive Phloxine B to Gram-Negative Bacteria, FEMS Immunol. Med. Microbiol., 2005, 45, 239–244.

    Article  CAS  Google Scholar 

  16. D. S. Moreno, H. Celedonio, R. L. Mangan, J. L. Zavala and P. Montoya, Field Evaluation of a Phototoxic Dye, Phloxine B, Against Three Species of Fruit Flies (Diptera: Tephritidae), J. Econ. Entomol., 2001, 94, 1419–1427.

    Article  CAS  Google Scholar 

  17. H. Qi, H. Takano, Y. Kato, Q. Wu, C. Ogata, B. Zhu, Y. Murata and Y. Nakamura, Hydrogen Peroxide-Dependent Photocytotoxicity by Phloxine B, a Xanthene-Type Food Colorant, Biochim. Biophys. Acta, 2011, 1810, 704–712.

    Article  CAS  Google Scholar 

  18. H. Qi, B. Zhu, N. Abe, Y. Shin, Y. Murata and Y. Nakamura, Involvement of Intracellular Oxidative Stress-Sensitive Pathway in Phloxine B-Induced Photocytotoxicity in Human T Lymphocytic Leukemia Cells, Food Chem. Toxicol., 2012, 50, 1841–1847.

    Article  CAS  Google Scholar 

  19. C. P. McCoy, R. A. Craig, S. M. McGlinchey, L. Carson, D. S. Jones and S. P. Gorman, Surface Localisation of Photosensitisers on Intraocular Lens Biomaterials for Prevention of Infectious Endophthalmitis and Retinal Protection, Biomaterials, 2012, 33, 7952–7958.

    Article  CAS  Google Scholar 

  20. R. F. Loring, H. C. Andersen and M. D. Fayer, Electronic Excited State Transport and Trapping in Solution, J. Chem. Phys., 1982, 76, 2015–2027.

    Article  CAS  Google Scholar 

  21. L. Kulak and C. Bojarski, Forward and Reverse Electronic Energy Transport and Trapping in Solution. II. Numerical Results and Monte Carlo Simulations, Chem. Phys., 1995, 191, 67–86.

    Article  CAS  Google Scholar 

  22. Y. Usui, Determination of Quantum Yield of Singlet Oxygen Formation by Photosensitization, Chem. Lett., 1973, 2, 743–744.

    Article  Google Scholar 

  23. M. Nowakowska, Solvent Effect on the Quantum Yield of the Self-Sensitized Photoperoxidation of 1,3-Diphenilisobenzofuran, J. Chem. Soc., Faraday Trans. 1, 1984, 80, 2119–2126.

    Article  CAS  Google Scholar 

  24. A. De Girolamo Del Mauro, A. I. Grimaldi, V. La Ferrara, E. Massera, M. L. Miglietta, T. Polichetti, G. Di Francia, A Simple Optical Model for the Swelling Evaluation in Polymer Nanocomposites, J. Sens., 2009, 703206.

    Google Scholar 

  25. J. W. Parker and M. E. Cox, Mass Transfer of Oxygen in Poly(2-Hydroxyethyl Methacrylate), J. Polym. Sci., Part A: Polym. Chem., 1988, 26, 1179–1188.

    Article  CAS  Google Scholar 

  26. J. F. Rabek, Photodegradation of Polymers: Physical Characteristics and Applications, Springer Verlag, Berlin, 2012, p. 87.

    Google Scholar 

  27. G. R. Fleming, A. W. E. Knight, J. M. Morris, R. J. S. Morrison and G. W. Robinson, Picosecond Fluorescence Studies of Xanthene Dyes, J. Am. Chem. Soc., 1977, 99, 4306–4311.

    Article  CAS  Google Scholar 

  28. Y. Tian, B. R. Shumway, W. Gao, C. Youngbull, M. R. Holl, R. H. Johnson and D. R. Meldrum, Influence of Matrices on Oxygen Sensing of Three Sensing Films with Chemically Conjugated Platinum Porphyrin Probes and Preliminary Application for Monitoring of Oxygen Consumption of Escherichia coli (E. coli), Sens. Actuators, B, 2010, 150, 579–587.

    Article  CAS  Google Scholar 

  29. O. Valdez-Aguilera and D. C. Neckers, Aggregation Phenomena in Xanthene Dyes, Acc. Chem. Res., 1989, 22, 171–177.

    Article  Google Scholar 

  30. H. B. Rodríguez, E. San Román, P. Duarte, I. Ferreira Machado, L. F. Vieira Ferreira, Eosin Y Triplet State as a Probe of Spatial Heterogeneity in Microcrystalline Cellulose, Photochem. Photobiol., 2012, 88, 831–839.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hernán B. Rodríguez or Enrique San Román.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litman, Y., Rodríguez, H.B. & San Román, E. Tuning the concentration of dye loaded polymer films for maximum photosensitization efficiency: phloxine B in poly(2-hydroxyethyl methacrylate). Photochem Photobiol Sci 15, 80–85 (2016). https://doi.org/10.1039/c5pp00360a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00360a

Navigation