Issue 47, 2015

Anomalous twisting strength of tilt grain boundaries in armchair graphene nanoribbons

Abstract

The twisting response of armchair graphene nanoribbons with tilt grain boundaries is theoretically and numerically investigated. It is found that the critical instability twist rate of graphene nanoribbons with grain boundaries is generally about 10% higher than that of common armchair graphene nanoribbons when the width of nanoribbons is less than 4.0 nm. Our analytical analysis indicates that the strengthening effect is resulted from the rotation of the compressed direction, deflection of grain boundaries, and the reflexing of the creased angle in nanoribbons: the rotation of the compressed direction induced by grain boundaries improves the buckling strength of nanoribbons due to the chirality-dependent buckling in graphene; the deflection of grain boundaries leads to a nonzero strain in the axle wire of nanoribbons, which eventually decreases the compressed stress; grain boundaries induce a spontaneous creased angle in nanoribbons, which is reflexed under twist loading and impedes the propagation of instability in nanoribbons. Furthermore, we found and demonstrated that grain boundaries changed the transport properties of twisted graphene nanoribbons. It is expected that our findings would improve the fundamental understanding of the strain-engineering of graphene nanoribbons used in nanodevices.

Graphical abstract: Anomalous twisting strength of tilt grain boundaries in armchair graphene nanoribbons

Article information

Article type
Paper
Submitted
24 Jul 2015
Accepted
06 Nov 2015
First published
06 Nov 2015

Phys. Chem. Chem. Phys., 2015,17, 31911-31916

Anomalous twisting strength of tilt grain boundaries in armchair graphene nanoribbons

X. Liu, F. Wang and H. Wu, Phys. Chem. Chem. Phys., 2015, 17, 31911 DOI: 10.1039/C5CP04343C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements