Issue 5, 2015

High-performance lithium iron phosphate with phosphorus-doped carbon layers for lithium ion batteries

Abstract

A novel composite of LiFePO4 with phosphorus-doped carbon layers has been prepared via a simple hydrothermal method using glucose as the carbon source to generate a carbon coating and triphenylphosphine as the phosphorus source. The effects of phosphorus doping on the phase purity, morphology and electrochemical performance of the materials are studied by the characterizations using X-ray diffraction, Raman spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy and electrochemical techniques. It is indicated that phosphorus doping into the carbon layers is beneficial for the graphitization of the carbon. Phosphorus in the carbon layers exists in the form of P–C bonds and its concentration depends on the second calcination temperature. Moreover, the phosphorus-doped carbon layers on the particle surface make the charge transfer resistance decrease remarkably from 156.5 Ω to 49.1 Ω, which can be ascribed to the free carriers donated by phosphorus. The as-prepared LiFePO4 with phosphorus-doped carbon layers calcined at 600 °C shows the best electrochemical performance with a discharge capacity of 124.0 mA h g−1 at a high rate of 20 C and an excellent retention rate of 91.4% after 50 cycles. The LiFePO4 with phosphorus-doped carbon layers exhibits excellent electrochemical performances, especially at high current rates; thus, it is a promising cathode material for high-performance lithium ion batteries.

Graphical abstract: High-performance lithium iron phosphate with phosphorus-doped carbon layers for lithium ion batteries

Article information

Article type
Paper
Submitted
30 Sep 2014
Accepted
23 Nov 2014
First published
24 Nov 2014

J. Mater. Chem. A, 2015,3, 2043-2049

Author version available

High-performance lithium iron phosphate with phosphorus-doped carbon layers for lithium ion batteries

Z. Jinli, W. Jiao, L. Yuanyuan, N. Ning, G. Junjie, Y. Feng and L. Wei, J. Mater. Chem. A, 2015, 3, 2043 DOI: 10.1039/C4TA05186F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements