Issue 61, 2014

Synthesis, characterization and gas permeation properties of anthracene maleimide-based polymers of intrinsic microporosity

Abstract

A series of new monomers containing dialkyl anthracene maleimide derivatives [4a,b(I–V)], which can be used as a precursor of a polymer of intrinsic microporosity (PIM) has been synthesized and characterized successfully. The homopolymers prepared via polycondensation with 2,3,5,6,-tetrafluoroterephthalonitrile (TFTPN) and their copolymers in combination with 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethyl-1,1′-spirobisindane (TTSBI) were characterized by SEC, FT-IR, TGA, 1H-NMR, BET-surface area and gas transport properties. Compared to polymers derived from 4a(I–V) monomers, the homopolymers and copolymers obtained from 4b(I–V) show improved solubility in common organic solvents and have high average molecular weight. Therefore they are able to form robust and transparent films. The gas transport properties of homopolymers and copolymers of 4b(I–V) show enhanced selectivity compared to PIM-1 for gas pairs such as O2/N2, CO2/N2 and CO2/CH4, followed by a slight decrease in permeability. The introduction of anthracene maleimide units (especially 4bIII) in the copolymer leads to more efficient chain packing and gives the copolymer a similar pore width distribution as PIM-1. As a consequence, the introduction of anthracene maleimide enhanced the CO2 selectivity of copolymers, compared to previously reported film forming polymers. Therefore, these polymers might be useful for gas separations relying on CO2 selectivity.

Graphical abstract: Synthesis, characterization and gas permeation properties of anthracene maleimide-based polymers of intrinsic microporosity

Supplementary files

Article information

Article type
Paper
Submitted
22 Apr 2014
Accepted
24 Jun 2014
First published
01 Aug 2014
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2014,4, 32148-32160

Synthesis, characterization and gas permeation properties of anthracene maleimide-based polymers of intrinsic microporosity

M. M. Khan, G. Bengtson, S. Neumann, Md. M. Rahman, V. Abetz and V. Filiz, RSC Adv., 2014, 4, 32148 DOI: 10.1039/C4RA03663H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements