Skip to main content

Advertisement

Log in

Evaluation of the charge transfer efficiency of organic thin-film photovoltaic devices fabricated using a photoprecursor approach

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Recently, a unique ‘photoprecursor approach’ was reported as a new option to fabricate a p-i-n triple-layer organic photovoltaic device (OPV) through solution processes. By fabricating the p-i-n architecture using two kinds of photoprecursors and a [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) as the donor and the acceptor, the p-i-n OPVs afforded a higher photovoltaic efficiency than the corresponding p–n devices and i-devices, while the photovoltaic efficiency of p-i-n OPVs depended on the photoprecursors. In this work, the charge transfer efficiency of the i-devices composed of the photoprecursors and PC71BM was investigated using high-sensitivity fluorescence microspectroscopy combined with a time-correlated single photon counting technique to elucidate the photovoltaic efficiency depending on the photoprecursors and the effects of the p-i-n architecture. The spatially resolved fluorescence images and fluorescence lifetime measurements clearly indicated that the compatibility of the photoprecursors with PC71BM influences the charge transfer and the photovoltaic efficiencies. Although the charge transfer efficiency of the i-device was quite high, the photovoltaic efficiency of the i-device was much lower than that of the p-i-n device. These results imply that the carrier generation and carrier transportation efficiencies can be increased by fabricating the p-i-n architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Y. Liang and L. P. Yu, Acc. Chem. Res., 2010, 43, 1227–1236.

    Article  CAS  Google Scholar 

  2. P. M. Beaujuge and J. M. J. Frechet, J. Am. Chem. Soc., 2011, 133, 20009–20029.

    Article  CAS  Google Scholar 

  3. D. Credgington and J. R. Durrant, J. Phys. Chem. Lett., 2012, 3, 1465–1478.

    Article  CAS  Google Scholar 

  4. B. E. Hardin, H. J. Snaith and M. D. McGehee, Nat. Photonics, 2012, 6, 162–169.

    Article  CAS  Google Scholar 

  5. G. Li, R. Zhu and Y. Yang, Nat. Photonics, 2012, 6, 153–161.

    Article  CAS  Google Scholar 

  6. A. Mishra and P. Bauerle, Angew. Chem., Int. Ed., 2012, 51, 2020–2067.

    Article  CAS  Google Scholar 

  7. H. J. Son, B. Carsten, I. H. Jung and L. P. Yu, Energy Environ. Sci., 2012, 5, 8158–8170.

    Article  CAS  Google Scholar 

  8. H. X. Zhou, L. Q. Yang and W. You, Macromolecules, 2012, 45, 607–632.

    Article  CAS  Google Scholar 

  9. C. W. Tang, Appl. Phys. Lett., 1986, 48, 183.

    Article  CAS  Google Scholar 

  10. N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Synth. Met., 1993, 59, 333–352.

    Article  CAS  Google Scholar 

  11. N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky and F. Wudl, Appl. Phys. Lett., 1993, 62, 585.

    Article  CAS  Google Scholar 

  12. J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti and A. B. Holmes, Nature, 1995, 376, 498–500.

    Article  CAS  Google Scholar 

  13. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 1995, 270, 1789–1791.

    Article  CAS  Google Scholar 

  14. L. Dou, J. Gao, E. Richard, J. You, C. C. Chen, K. C. Cha, Y. He, G. Li and Y. Yang, J. Am. Chem. Soc., 2012, 134, 10071–10079.

    Article  CAS  Google Scholar 

  15. Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su and Y. Cao, Adv. Mater., 2011, 23, 4636–4643.

    Article  CAS  Google Scholar 

  16. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li and Y. Yang, Nat. Commun., 2013, 4, 1446.

    Article  Google Scholar 

  17. M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley and J. Nelson, Nat. Mater., 2008, 7, 158–164.

    Article  CAS  Google Scholar 

  18. Y. M. Nam, J. Huh and W. H. Jo, J. Appl. Phys., 2011, 110, 114521.

    Article  Google Scholar 

  19. Z. G. Xiao, Y. B. Yuan, B. Yang, J. VanDerslice, J. H. Chen, O. Dyck, G. Duscher and J. S. Huang, Adv. Mater., 2014, 26, 3068–3075.

    Article  CAS  Google Scholar 

  20. Y. Yamaguchi, M. Suzuki, T. Motoyama, S. Sugii, C. Katagiri, K. Takahira, S. Ikeda, H. Yamada and K. Nakayama, Sci. Rep., 2014, 4, 7151.

    Article  CAS  Google Scholar 

  21. L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, R. H. Friend and J. D. MacKenzie, Science, 2001, 293, 1119–1122.

    Article  CAS  Google Scholar 

  22. P. Peumans, A. Yakimov and S. R. Forrest, J. Appl. Phys., 2004, 95, 2938–2938.

    Article  CAS  Google Scholar 

  23. H. Benten, M. Ogawa, H. Ohkita and S. Ito, Adv. Funct. Mater., 2008, 18, 1563–1572.

    Article  CAS  Google Scholar 

  24. A. Furube, Z. S. Wang, K. Sunahara, K. Hara, R. Katoh and M. Tachiya, J. Am. Chem. Soc., 2010, 132, 6614–6615.

    Article  CAS  Google Scholar 

  25. J. Guo, H. Ohkita, S. Yokoya, H. Benten and S. Ito, J. Am. Chem. Soc., 2010, 132, 9631–9637.

    Article  CAS  Google Scholar 

  26. X. F. Wang, L. Wang, Z. Q. Wang, Y. W. Wang, N. Tamai, Z. R. Hong and J. Kido, J. Phys. Chem. C, 2013, 117, 804–811.

    Article  CAS  Google Scholar 

  27. S. Gelinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin, J. Clark, T. S. van der Poll, G. C. Bazan and R. H. Friend, Science, 2014, 343, 512–516.

    Article  CAS  Google Scholar 

  28. Y. Q. Gao, T. P. Martin, A. K. Thomas and J. K. Grey, J. Phys. Chem. Lett., 2010, 1, 178–182.

    Article  CAS  Google Scholar 

  29. J. H. Huang, F. C. Chien, P. L. Chen, K. C. Ho and C. W. Chu, Anal. Chem., 2010, 82, 1669–1673.

    Article  CAS  Google Scholar 

  30. D. P. Ostrowski, M. S. Glaz, B. W. Goodfellow, V. A. Akhavan, M. G. Panthani, B. A. Korgel and D. A. V. Bout, Small, 2010, 6, 2832–2836.

    Article  CAS  Google Scholar 

  31. T. J. K. Brenner and C. R. McNeill, J. Phys. Chem. C, 2011, 115, 19364–19370.

    Article  CAS  Google Scholar 

  32. X. T. Hao, L. M. Hirvonen and T. A. Smith, Methods Appl. Fluoresc., 2013, 1, 015004.

    Article  CAS  Google Scholar 

  33. H. Yamada, E. Kawamura, S. Sakamoto, Y. Yamashita, T. Okujima, H. Uno and N. Ono, Tetrahedron Lett., 2006, 47, 7501–7504.

    Article  CAS  Google Scholar 

  34. T. Motoyama, T. Kiyota, H. Yamada and K. Nakayama, Sol. Energy Mater. Sol. Cells, 2013, 114, 156–160.

    Article  CAS  Google Scholar 

  35. T. Motoyama, S. Sugii, S. Ikeda, Y. Yamaguchi, H. Yamada and K. Nakayama, Jpn. J. Appl. Phys., 2014, 53, 01AB02.

    Article  CAS  Google Scholar 

  36. M. Maus, M. Cotlet, J. Hofkens, T. Gensch, F. C. De Schryver, J. Schaffer and C. A. M. Seidel, Anal. Chem., 2001, 73, 2078–2086.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadahiro Masuo.

Additional information

Electronic supplementary information (ESI) available: Details of instrumental setup and phase AFM images of BHJ-OPVs. See DOI: 10.1039/c4pp00477a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masuo, S., Sato, W., Yamaguchi, Y. et al. Evaluation of the charge transfer efficiency of organic thin-film photovoltaic devices fabricated using a photoprecursor approach. Photochem Photobiol Sci 14, 883–890 (2015). https://doi.org/10.1039/c4pp00477a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00477a

Navigation