Skip to main content

Advertisement

Log in

The impact of macrophage-cancer cell interaction on the efficacy of photodynamic therapy

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Macrophages are one of the principal host cell populations in solid tumors. They are capable, due to their plasticity, of acquiring phenotypes that either combat (M1 type) or promote (M2 type) neoplastic growth. These cells, known as tumor-associated macrophages (TAMs), play complex but pivotal roles in the outcome of photodynamic therapy (PDT) of malignant lesions. Among the various parenchymal and stromal cell populations found in tumors, TAMs have been shown to have the greatest capacity for the uptake of systemically administered photosensitizers. Both the tumor-localizing property of photosensitizers and their tumor-localized fluorescence could be partly attributed to the activity of TAMs. Since resident TAMs with accumulated high photosensitizer content will sustain high degrees of PDT damage, this population (predominantly M2 in most tumors) is selectively destroyed, and during the ensuing inflammatory reaction is replaced with newly invading macrophages of M1 phenotype. These macrophages are sentinels responding to DAMP signals from PDT-treated tumor cells and in turn are mobilized to generate a variety of inflammatory/immune mediators and opsonins. They have a critical role in contributing to the therapeutic effect of PDT by mediating disposal of killed cancer cells and by processing/presenting tumor antigens to T lymphocytes. However, TAMs accumulating in the later post-PDT phase can acquire the M2 (healing) phenotype, and could have a role in tumor recurrence by releasing factors that promote angiogenesis and the survival/proliferation of remaining cancer cells. Various therapeutic strategies modulating TAM activity in the PDT response have potential for clinical use for improving PDT-mediated tumor control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hewald, A. Egesten, The Janus face of macrophages in immunity, J. Innate Immun., 2014, 6, 713–715.

    Article  Google Scholar 

  2. C. D. Mills, K. Ley, M1 and M2 macrophages: the chicken and the egg of immunity, J. Innate Immun., 2014, 6, 716–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. P. J. Murray, T. A. Wynn, Protective and pathogenic functions of macrophage subsets, Nat. Rev. Immunol., 2011, 11, 723–737.B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. F. Geissmann, M. G. Manz, S. Jung, M. H. Sieweke, M. Merad, K. Ley, Development of monocytes, macrophages, and dendritic cells, Science, 2010, 327, 656–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. R. Gwinn, V. Vallyathan, Respiratory burst: role in signal transduction in alveolar macrophages, J. Toxicol. Environ. Health, Part B, 2006, 9, 27–39.

    Article  CAS  Google Scholar 

  6. N.-B. Hao, M.-H. Lü, Y.-H. Fan, Y.-L. Cao, Z.-R. Zhang, S.-M. Yang, Macrophages in tumor microenvironments and the progression of tumors, Clin. Dev. Immunol., 2012, 2012, 948098.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. M. Korbelik, PDT-associated host response and its role in the therapy outcome, Lasers Surg. Med., 2006, 38, 500–508.

    Article  PubMed  Google Scholar 

  8. A. P. Castano, P. Mroz, M. R. Hamblin, Photodynamic therapy and anti-tumor immunity, Nat. Rev. Cancer, 2006, 6, 535–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Korbelik and G. Krosl, Photosensitizer distribution and photosensitized damage of tumor tissue, in The fundamental bases of phototherapy, ed. H. Hönigsmann, G. Jori and A. R. Young, OEMF spa, Milan, 1996, pp. 229–245.

  10. M. R. Hamblin, E. L. Newman, On the mechanism of tumor-localizing effect in photodynamic therapy, J. Photochem. Photobiol., B., 1994, 23, 3–8.

    Article  CAS  Google Scholar 

  11. P. J. Bugelski, C. W. Porter, T. J. Dougherty, Autoradiographic distribution of hematoporphyrin derivative in normal and tumor tissue of the mouse, Cancer Res., 1981, 41, 4606–4612.

    CAS  PubMed  Google Scholar 

  12. W. S. Chan, J. F. Marshall, G. Y. F. Lam, I. R. Hart, Tissue uptake, distribution, and potency of the photoactivable dye chloraluminum sulfonated phthalocyanine in mice bearing transplantable tumors, Cancer Res., 1988, 48, 3040–3044.

    CAS  PubMed  Google Scholar 

  13. B. W. Henderson, D. A. Bellnier, Tissue localization of photosensitizers and the mechanism of photodynamic tissue destruction, CIBA Found. Symp., 1989, 146, 112–125.

    CAS  PubMed  Google Scholar 

  14. M. Korbelik, G. Krosl, D. J. Chaplin, Photofrin uptake by murine macrophages, Cancer Res., 1991, 51, 2251–2255.

    CAS  PubMed  Google Scholar 

  15. M. Korbelik, G. Krosl, H. Adomat, K. A. Skov, The effect of differentiation on photosensitizer uptake by HL60 cells, Photochem. Photobiol., 1993, 58, 670–675.

    Article  CAS  PubMed  Google Scholar 

  16. M. Korbelik, G. Krosl, P. L. Olive, D. J. Chaplin, Distribution of Photofrin between tumour cells and tumour associated macrophages, Br. J. Cancer, 1991, 64, 508–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. Korbelik, Distribution of disulfonated and tetrasulfonated aluminum phthalocyanine between malignant and host cell populations of murine fibrosarcoma, J. Photochem. Photobiol., B, 1993, 20, 173–181.

    Article  CAS  Google Scholar 

  18. M. Korbelik, G. Krosl, Accumulation of benzoporphyrin derivative in malignant and host cell populations of the murine RIF tumor, Cancer Lett., 1995, 97, 249–254.

    Article  CAS  PubMed  Google Scholar 

  19. M. Korbelik, G. Krosl, Photofrin accumulation in malignant and host cell populations of various tumors, Br. J. Cancer, 1996, 73, 506–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Korbelik, G. Krosl, Cellular levels of photosensitizers in tumours: the role of proximity to the blood supply, Br. J. Cancer, 1994, 70, 604–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. G. Jori, In vivo transport and pharmacokinetic behaviour of tumor photosensitizers, CIBA Found. Symp., 1989, 146, 78–86.

    CAS  PubMed  Google Scholar 

  22. M. Korbelik, G. Krosl, D. J. Chaplin, Can PDT be potentiated by immunotherapy?, Proc. SPIE-Int. Soc. Opt. Eng., 1991, 1616, 192–198.

    Google Scholar 

  23. M. R. Hamblin, J. L. Miller, B. Ortel, Scavenger-receptor targeted photodynamic therapy, Photochem. Photobiol., 2000, 72, 533–540.

    Article  CAS  PubMed  Google Scholar 

  24. M. R. Hamblin, J. L. Miller, I. Rizvi, B. Ortel, Degree of substitution of chlorin e6 on charged poly-L-lysine chains affects their cellular uptake, localization and phototoxicity towards macrophages and cancer cells, J. X-ray Sci. Technol., 2002, 10, 139–152.

    CAS  Google Scholar 

  25. J. F. Marshall, W.-S. Chan, I. R. Hart, Effect of photodynamic therapy on anti-tumor immune defenses: comparison of the photosensitizers hematoporphyrin derivative and chloro-aluminum sulfonated phthalocyanine, Photochem. Photobiol., 1989, 49, 627–632.

    Article  CAS  PubMed  Google Scholar 

  26. R. W. Steubing, S. Yeturu, A. Tuccillo, C.-H. Sun, M. W. Berns, Activation of macrophages by Photofrin II during photodynamic therapy, J. Photochem. Photobiol., B, 1991, 10, 133–145.

    Article  CAS  Google Scholar 

  27. N. Yamamoto, J. K. Hoober, N. Yamamoto, S. Yamamoto, Tumoricidal capacities of macrophages photodynamically activated with hematoporphyrin derivative, Photochem. Photobiol., 1992, 56, 245–250.

    Article  CAS  PubMed  Google Scholar 

  28. S. Evans, W. Matthews, R. Perry, D. Fraker, J. Norton, H. I. Pass, Effect of photodynamic therapy on tumor necrosis factor production by murine macrophages, J. Natl. Cancer Inst., 1990, 82, 34–39.

    Article  CAS  PubMed  Google Scholar 

  29. M. Korbelik, J. Sun, I. Cecic, Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response, Cancer Res., 2005, 65, 1018–1026.

    CAS  PubMed  Google Scholar 

  30. F. Zhou, D. Xing, W. R. Chen, Regulation of HSP70 on activating macrophages using PDT-induced apoptotic cells, Int. J. Cancer, 2009, 125, 1380–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. S. Song, F. Zhou, W. R. Chen, D. Xing, PDT-induced HSP70 externalization up-regulates NO production via TLR2 signal pathway in macrophages, FEBS Lett., 2013, 587, 128–135.

    Article  CAS  PubMed  Google Scholar 

  32. B. Stott, M. Korbelik, Activation of complement C3, C5, and C9 genes in tumors treated by photodynamic therapy, Cancer Immunol. Immunother., 2007, 56, 649–658.

    Article  CAS  PubMed  Google Scholar 

  33. S. Merchant, J. Sun, M. Korbelik, Dying cells program their expedient disposal: serum amyloid P component upregulation in vivo and in vitro induced by photodynamic therapy of cancer, Photochem. Photobiol. Sci., 2007, 6, 1284–1289.

    Article  CAS  PubMed  Google Scholar 

  34. M. Korbelik, J. Banáth, W. Zhang, F. Wong, J. Bielawski, D. Separovic, Ceramide and sphingosine-1-phosphate/sphingosine act as photodynamic therapy-elicited damage-associated molecular patterns: Release from cells and impact on tumor-associated macrophages, J. Anal. Bioanal. Tech., 2014, S1, 009. 10.4172/2155-9872.S1-009

    Google Scholar 

  35. M. Korbelik, Complement upregulation in photodynamic therapy treated tumors: role of Toll-like receptor pathway and NFκB, Cancer Lett., 2009, 281, 232–238.

    Article  CAS  PubMed  Google Scholar 

  36. I. Cecic, J. Sun, M. Korbelik, Role of complement anaphylatoxin C3a in photodynamic therapy-elicited engagement of neutrophils and other immune cells, Photochem. Photobiol., 2006, 82, 558–562.

    Article  CAS  PubMed  Google Scholar 

  37. A. J. Nauta, M. R. Daha, C. van Kooten, A. Roos, Recognition and clearance of apoptotic cells: a role of complement and pentraxins, Trends Immunol., 2003, 24, 148–154.

    Article  CAS  PubMed  Google Scholar 

  38. S. L. Cassel, F. S. Sutterwala, Sterile inflammatory responses mediated by the NLRP3 inflammasome, Eur. J. Immunol., 2010, 40, 607–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. G. Krosl, M. Korbelik, G. J. Dougherty, Induction of immune cell infiltration into murine SCCVII tumour by Photofrin-based photodynamic therapy, Br. J. Cancer, 1995, 71, 549–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. M. Korbelik, Tumor-localized insult delivered by photodynamic therapy and the breakdown of tumor immunotolerance, in Tumor Ablation, ed. Y. Keisari, Springer, Dordrecht, 2013, vol. 5, (The Tumor Microenvironment series), ch. 7, pp.121–132.

  41. M. Korbelik, G. Krosl, Enhanced macrophage cytotoxicity against tumor cells treated with photodynamic therapy, Photochem. Photobiol., 1994, 60, 497–502.

    Article  CAS  PubMed  Google Scholar 

  42. S. K. Biswas, P. Allavena, A. Mantovani, Tumor-associated macrophages: functional diversity, clinical significance, and open questions, Semin. Immunopathol., 2013, 35, 585–600.

    Article  CAS  PubMed  Google Scholar 

  43. Q. Liu, M. R. Hamblin, Macrophage-targeted photodynamic therapy: scavenger receptor expression and activation state, Int. J. Immunopathol. Pharmacol., 2005, 18, 391–402.

    Article  CAS  PubMed  Google Scholar 

  44. J. Canton, D. Neculai, S. Grinstein, Scavenger receptors in homeostasis and immunity, Nat. Rev. Immunol., 2013, 13, 621–634.

    Article  CAS  PubMed  Google Scholar 

  45. T. N. Demidova, M. R. Hamblin, Macrophage-targeted photodynamic therapy, Int. J. Immunopathol. Pharmacol., 2004, 17, 117–126.

    Article  CAS  PubMed  Google Scholar 

  46. F. Anatelli, P. Mroz, Q. Liu, A. P. Castano, E. Swietlik, M. R. Hamblin, Macrophage-targeted photosensitizer conjugate delivered by intratumoral injection, Mol. Pharm., 2006, 3, 654–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. A. Tawakol, A. P. Castano, F. Anatelli, G. Bashian, J. Stern, T. Zahra, F. Gad, S. Chirico, A. Ahmadi, A. J. Fischman, J. E. Muller, M. R. Hamblin, Photosensitizer delivery to vulnerable atherosclerotic plaque: comparison of macrophage-targeted conjugate versus free chlorin(e6), J. Biomed. Opt., 2006, 11, 021008.

    Article  PubMed  CAS  Google Scholar 

  48. A. Tawakol, A. P. Castano, F. Gad, T. Zahra, G. Bashian, R. Q. Migrino, A. Ahmadi, J. Stern, F. Anatelli, S. Chirico, A. Shirazi, S. Syed, A. J. Fischman, J. E. Muller, M. R. Hamblin, Intravascular detection of inflamed atherosclerotic plaques using a fluorescent photosensitizer targeted to the scavenger receptor, Photochem. Photobiol. Sci., 2008, 7, 33–39.

    Article  CAS  PubMed  Google Scholar 

  49. A. J. Gomes, L. O. Lunardi, J. M. Marchetti, C. N. Lunardi, A. C. Tedesco, Photobiological and ultrastructural studies of nanoparticles of poly(lactic-co-glycolic acid)-containing bacteriochlorophyll-a as a photosensitizer useful for PDT treatment, Drug Delivery, 2005, 12, 159–164.

    Article  CAS  PubMed  Google Scholar 

  50. H. Kim, Y. Kim, I.-H. Kim, K. Kim, Y. Choi, ROS-responsive activable photosensitizing agent for imaging and photodynamic therapy of activated macrophages, Theranostics, 2014, 4, 1–11.

    Article  CAS  Google Scholar 

  51. J. Klesing, A. Wiehe, B. Gitter, S. Gräfe, M. Epple, Positively charged calcium phosphate/polymer nanoparticles for photodynamic therapy, J. Mater. Sci. Mater. Med., 2010, 21, 997–892.

    Article  CAS  Google Scholar 

  52. M. Korbelik, V. R. Naraparaju, N. Yamamoto, Macrophage directed immunotherapy as adjuvant to photodynamic therapy of cancer, Br. J. Cancer, 1997, 75, 202–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. G. Krosl, M. Korbelik, Potentiation of photodynamic therapy by immunotherapy: The effect of Schizophyllan (SPG), Cancer Lett., 1994, 84, 43–49.

    Article  CAS  PubMed  Google Scholar 

  54. M. Uehara, K. Sano, Z.-L. Wang, J. Sekine, H. Ikeda, T. Inokuchi, Enhancement of the photodynamic antitumor effect by streptococcal preparation OK-432 in the mouse carcinoma, Cancer Immunol. Immunother., 2000, 49, 401–409.

    Article  CAS  PubMed  Google Scholar 

  55. R. C. Myers, B. H. Lau, D. Y. Kunihira, R. R. Torrey, J. L. Woolley, J. Tosk, Modulation of hematoporphyrin derivative-sensitized phototherapy with corynebacterium parvum in murine transitional cell carcinoma, Urology, 1989, 33, 230–235.

    Article  CAS  PubMed  Google Scholar 

  56. M. Korbelik, J. Sun, J. J. Posakony, Interaction Between Photodynamic Therapy and BCG Immunotherapy Responsible for the Reduced Recurrence of Treated Mouse Tumors, Photochem. Photobiol., 2001, 73, 403–409.

    Article  CAS  PubMed  Google Scholar 

  57. M. Korbelik, I. Cecic, Enhancement of tumour response to photodynamic therapy by adjuvant mycobacterium cell-wall treatment, J. Photochem. Photobiol., B, 1998, 44, 151–158.

    Article  CAS  Google Scholar 

  58. M. Korbelik, S. Merchant, N. Huang, Exploitation of immune response-eliciting properties of hypocrellin photosensitizer SL052-based photodynamic therapy for eradication of malignant tumors, Photochem. Photobiol., 2009, 85, 1418–1424.

    Article  CAS  PubMed  Google Scholar 

  59. G. Krosl, M. Korbelik, J. Krosl, G. J. Dougherty, Potentiation of Photodynamic therapy elicited antitumor response by localized treatment with granulocyte-macrophage colony stimulating factor, Cancer Res., 1996, 56, 3281–3286.

    CAS  PubMed  Google Scholar 

  60. M. Korbelik, G. J. Dougherty, Complement activation approaches for use in conjunction with PDT for cancer treatment, Proc. SPIE-Int. Soc. Opt. Eng., 2005, 5695, 17–26.

    Google Scholar 

  61. M. Korbelik, J. Sun, I. Cecic, K. Serrano, Adjuvant treatment for complement activation increases the effectiveness of photodynamic therapy of solid tumors, Photochem. Photobiol. Sci., 3004, 3, 812–816.

    Article  Google Scholar 

  62. M. Korbelik, P. D. Cooper, Potentiation of photodynamic therapy of cancer by complement: the effect of γ-inulin, Br. J. Cancer, 2007, 96, 67–72.

    Article  CAS  PubMed  Google Scholar 

  63. M. Korbelik, I. Cecic, Complement activation cascade and its regulation: relevance for the response of solid tumors to photodynamic therapy, J. Photochem. Photobiol., B, 2008, 93, 53–59.

    Article  CAS  Google Scholar 

  64. C. J. Gomer, A. Ferrario, M. Luna, N. Rucker, S. Wong, Photodynamic therapy: combined modality approaches targeting the tumor microenvironment, Lasers Surg. Med., 2006, 38, 516–521.

    Article  PubMed  Google Scholar 

  65. A. Ferrario, C. J. Gomer, Avastin enhances photodynamic therapy treatment of Kaposi’s sarcoma in a mouse tumor model, J. Environ. Path. Toxicol. Oncol., 2006, 25, 251–259.

    Article  CAS  Google Scholar 

  66. M. Makowski, T. Grzela, J. Nidrla, M. Azarczyk, P. Mroz, M. Kopee, D. Nowis, P. Mrowka, M. Wasik, M. Jakobisiak, J. Golab, Inhibitor of cyclooxigenase-2 indirectly potentiates antitumor effects of photodynamic therapy in mice, Clin. Cancer Res., 2003, 9, 5417–5422.

    CAS  PubMed  Google Scholar 

  67. A. Ferrario, N. Rucker, S. Wong, M. Luna, C. J. Gomer, Survivin, a member of the Inhibitor of Apoptosis family, is induced by photodynamic therapy and is a target for improving treatment response, Cancer Res., 2007, 67, 4989–4995.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mladen Korbelik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korbelik, M., Hamblin, M.R. The impact of macrophage-cancer cell interaction on the efficacy of photodynamic therapy. Photochem Photobiol Sci 14, 1403–1409 (2015). https://doi.org/10.1039/c4pp00451e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00451e

Navigation