Issue 34, 2013

Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system

Abstract

In this study, a memristor with the simple structure Ag/poly(3,4-ethylenedioxythiophene):poly (styrenesulphonate) (PEDOT:PSS)/Ta was fabricated. Essential synaptic plasticity and learning behaviours were emulated using this memristor, including short-term plasticity, long-term plasticity, spike-timing-dependent plasticity and spike-rate-dependent plasticity. Important time constants were extracted from these synaptic modifications, which are associated with brain learning and memory functions. It was clearly demonstrated that the movement of the Ag interface upon the initiation of a redox reaction accounts for the resistive switching mechanism of our memristor. The conducting path in the polymer layer and the elastic effect of the polymer matrix were suggested to be considered in the memory and learning processes. Moreover, the energy band diagram of our memristor was drawn after the cross-sectional transmission electron microscopy images were analysed. It was found that a natural p–n junction in the PEDOT:PSS/Ta compound was formed. This resulted in rectifying, high resistance and low power consumption. Our device structure may be considered a feasible prototype for integrating memristors into a large-scale neuromorphic circuit.

Graphical abstract: Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system

Article information

Article type
Paper
Submitted
28 Mar 2013
Accepted
24 Jun 2013
First published
24 Jun 2013

J. Mater. Chem. C, 2013,1, 5292-5298

Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system

S. Li, F. Zeng, C. Chen, H. Liu, G. Tang, S. Gao, C. Song, Y. Lin, F. Pan and D. Guo, J. Mater. Chem. C, 2013, 1, 5292 DOI: 10.1039/C3TC30575A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements