Issue 26, 2014

Synthesis of a three dimensional structure of vertically aligned carbon nanotubes and graphene from a single solid carbon source

Abstract

Here, we demonstrate the synthesis of a three dimensional (3D) structure of vertically aligned carbon nanotubes (VACNTs) and graphene from a single solid carbon source. Graphene growth on Cu foil is achieved using solid camphor as the carbon source, whereas the VACNTs are obtained by adding a small amount of ferrocene in the camphor feedstock with minimum contamination from the iron catalyst. Highly dense VACNTs are grown on a transferred graphene film to fabricate the hybrid structure. Raman spectroscopy, optical and scanning electron microcopy studies confirm out of plane growth of the carbon nanotubes (CNTs) from the graphene film. Current–voltage (IV) measurements are performed to investigate the in plane and out of plane electrical characteristics of the 3D structure. Contact resistance of the VACNTs–graphene is explored taking into account the other resistive contacts in the 3D material system. Achieving a seamless contact of VACNTs–graphene film is significant for low contact resistance and thereby practical device application.

Graphical abstract: Synthesis of a three dimensional structure of vertically aligned carbon nanotubes and graphene from a single solid carbon source

Article information

Article type
Paper
Submitted
02 Nov 2013
Accepted
28 Jan 2014
First published
28 Jan 2014

RSC Adv., 2014,4, 13355-13360

Synthesis of a three dimensional structure of vertically aligned carbon nanotubes and graphene from a single solid carbon source

S. M. Shinde, G. Kalita, S. Sharma, R. Papon, M. Z. Yusop and M. Tanemura, RSC Adv., 2014, 4, 13355 DOI: 10.1039/C3RA46351F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements