Skip to main content
Log in

Hydrogen-bond networks between the C-terminus and Arg from the first α-helix stabilize photoprotein molecules

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Previous studies have stated that aequorin loses most of its bioluminescence activity upon modification of the C-terminus, thus limiting the production of photoprotein fusion proteins at its N-terminus. In the present work, we investigate the importance of the C-terminal proline and the hydrogen bonds it forms for photoprotein active complex formation, stability and functional activity. According to the crystal structures of obelin and aequorin, two Ca2+-regulated photoproteins, the carboxyl group of the C-terminal Pro forms two hydrogen bonds with the side chain of Arg21 (Arg15 in aequorin case) situated in the first α-helix. Whereas, deletion or substitution of the C-terminal proline could noticeably change the bioluminescence activity, stability or the yield of an active photoprotein complex. Therefore, modifications of the first α-helix Arg has a clear destructive effect on the main photoprotein properties. A C-terminal hydrogen-bond network is proposed to be important for the stability of photoprotein molecules towards external disturbances, when taking part in the formation of locked protein conformations and isolation of coelenterazine-binding cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Nomura, S. Inouye, Y. Ohmiya and F. I. Tsuji, A C-terminal proline is required for bioluminescence of the Ca2+-binding photoprotein, aequorin, FEBS Lett., 1991, 295, 63–66.

    Article  CAS  Google Scholar 

  2. N. J. Watkins and A. K. Campbell, Requirement of the C-terminal proline residue for stability of the Ca2+-activated photoprotein aequorin, Biochem. J., 1993, 293, 181–185.

    Article  CAS  Google Scholar 

  3. S. Zenno and S. Inouye, Bioluminescent immunoassay using a fusion protein of protein A and the photoprotein aequorin, Biochem. Biophys. Res. Commun., 1990, 171, 169–174.

    Article  CAS  Google Scholar 

  4. L. A. Frank, V. A. Illarionova and E. S. Vysotski, Use of proZZ-obelin fusion protein in bioluminescent immunoassay, Biochem. Biophys. Res. Commun., 1996, 219, 475–479.

    Article  CAS  Google Scholar 

  5. J. P. Waud, A. B. Fajardo, T. Sudhaharan, A. R. Trimby, J. Jeffery, A. Jones and A. K. Campbell, Measurement of proteases using chemiluminescence-resonance-energy transfer chimaeras between green fluorescent protein and aequorin, Biochem. J., 2001, 357, 687–697.

    Article  CAS  Google Scholar 

  6. V. Baubet, H. Mouellic, A. K. Campbell, E. Lucas-Meunier, P. Fossier and P. Brulet, Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 7260–7265.

    Article  CAS  Google Scholar 

  7. A. Yu. Gorokhovatsky, V. V. Marchenkov, N. V. Rudenko, T. V. Ivashina, V. N. Ksenzenko, N. Burkhardt, G. V. Semisotnov, L. M. Vinokurov, Yu. B. Alakhov, Fusion of Aequorea victoria GFP and aequorin provides their Ca2+-induced interaction that results in red shift of GFP absorption and efficient bioluminescence energy transfer, Biochem. Biophys. Res. Commun., 2004, 320, 703–711.

    Article  CAS  Google Scholar 

  8. Z. J. Liu, E. S. Vysotski, C. J. Chen, J. P. Rose, J. Lee and B. C. Wang, Structure of the Ca2+-regulated photoprotein obelin at 1.7 Å resolution determined directly from its sulfur substructure, Protein Sci., 2000, 9, 2085–2093.

    Article  CAS  Google Scholar 

  9. J. F. Head, S. Inouye, K. Teranishi and O. Shimomura, The crystal structure of the photoprotein aequorin at 2.3 Å resolution, Nature, 2000, 405, 372–376.

    Article  CAS  Google Scholar 

  10. T. F. Fagan, Y. Ohmiya, J. R. Blinks, S. Inouye and F. I. Tsuji, Cloning, expression and sequence analysis of cDNA for the Ca2+-binding photoprotein, mitrocomin, FEBS Lett., 1993, 333, 301–305.

    Article  CAS  Google Scholar 

  11. GenBank Accession No. AAA27716.

  12. S. V. Markova, E. S. Vysotski and J. Lee, Obelin hyperexpression in E. coli, purification and characterization, in Bioluminescence and Chemiluminescence, ed. J. F. Case, P. J. Herring, B. H. Robison, S. H. D. Haddock, L. J. Kricka and P. E. Stanley, World Scientific Publishing Co., Singapore, 2001, pp. 115–119.

    Chapter  Google Scholar 

  13. B. A. Illarionov, L. A. Frank, V. A. Illarionova, V. S. Bondar, E. S. Vysotski and J. R. Blinks, Recombinant obelin: cloning and expression of cDNA, purification and characterization as a calcium indicator, Methods Enzymol., 2000, 227, 223–249.

    Article  Google Scholar 

  14. S. V. Markova, E. S. Vysotski, J. R. Blinks, L. P. Burakova, B. C. Wang and J. Lee, Obelin from the bioluminescent marine hydroid Obelia geniculata: cloning, expression, and comparison of some properties with those of other Ca2+-regulated photoproteins, Biochemistry, 2002, 41, 2227–2236.

    Article  CAS  Google Scholar 

  15. O. Shimomura and F. H. Johnson, Regeneration of the photoprotein aequorin, Nature, 1975, 256, 236–238.

    Article  CAS  Google Scholar 

  16. J. W. Hastings, G. Mitchell, P. H. Mattingly, J. R. Blinks, M. van Leeuwen, Response of aequorin bioluminescence to rapid changes in calcium concentration, Nature, 1969, 222, 1047–1050.

    Article  CAS  Google Scholar 

  17. E. V. Eremeeva, L. A. Frank, S. V. Markova and E. S. Vysotski, Ca2+-regulated photoprotein obelin as N-terminal partner in the fusion proteins, J. Sib. Fed. Univ., Biol., 2010, 4, 372–383.

    Google Scholar 

  18. S. K. Deo, J. C. Lewis and S. Daunert, C-terminal and N-terminal fusions of aequorin with small peptides in immunoassay development, Bioconjugate Chem., 2001, 12, 378–384.

    Article  CAS  Google Scholar 

  19. E. S. Vysotski, S. V. Markova and L. A. Frank, Calcium-regulated photoproteins of marine coelenterates, Mol. Biol., 2006, 40, 355–367.

    Article  CAS  Google Scholar 

  20. S. V. Markova, L. P. Burakova, S. Golz, N. P. Malikova, L. A. Frank and E. S. Vysotski, The light-sensitive photoprotein berovin from the bioluminescent ctenophore Beroe abyssicola: a novel type of Ca2+-regulated photoprotein, FEBS J., 2012, 279, 856–870.

    Article  CAS  Google Scholar 

  21. E. V. Eremeeva, S. V. Markova, A. H. Westphal, A. J. Visser, W. J. H. van Berkel and E. S. Vysotski, The intrinsic fluorescence of apo-obelin and apo-aequorin and use of its quenching to characterize coelenterazine binding, FEBS Lett., 2009, 583, 1939–1944.

    Article  CAS  Google Scholar 

  22. E. V. Eremeeva, P. V. Natashin, L. Song, Y. G. Zhou, W. J. H. van Berkel, Z. J. Liu and E. S. Vysotski, Oxygen activation of apo-obelin-coelenterazine complex, ChemBioChem, 2013, 14, 739–745.

    Article  CAS  Google Scholar 

  23. E. V. Eremeeva, S. V. Markova, W. J. H. van Berkel and E. S. Vysotski, Role of key residues of obelin in coelenterazine binding and conversion into 2-hydroperoxy adduct, J. Photochem. Photobiol., B, 2013, 127, 133–139.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Eremeeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eremeeva, E.V., Burakova, L.P., Krasitskaya, V.V. et al. Hydrogen-bond networks between the C-terminus and Arg from the first α-helix stabilize photoprotein molecules. Photochem Photobiol Sci 13, 541–547 (2014). https://doi.org/10.1039/c3pp50369k

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50369k

Navigation