Issue 37, 2013

Growth defects and epitaxy in Fe3O4 and γ-Fe2O3 nanocrystals

Abstract

The origin of growth defects and epitaxial layers in nanocrystalline magnetite (Fe3O4) and its oxidation product, maghemite (γ-Fe2O3), was studied. In magnetite, two types of planar defects are identified, (111) spinel-law twin boundaries and (110) stacking faults (SF). The twinning in magnetite is related to magnetic-field-assisted self-assembly and the growth of octahedral nanocrystals throughout their crystallization period. Simple contact twins of crystals sharing common octahedral faces, or even plate-like twins develop when two adjoined crystals continue their growth as a unit. Crystallographically, twinned domains are related by 180° rotation about the [111]-axis and with the (111) plane as the interface, producing local hcp stacking in the oxygen sub-lattice. SFs are present in both single and twinned magnetite crystals, where they are pinned to (111) twin boundaries and are present only in one domain. The displacement vector corresponding to the observed translation is RSF = ¼·[110], pointing normal to the (110) plane of the SF. After the thermal treatment at 250 °C both types of planar defects are retained. In addition to planar defects, originating from magnetite, we identified a new formation of few-nanometers-thick epitaxial layers, of a hexagonal Fe(III)-oxide–hydroxide, feroxyhyte (δ-FeOOH), covering the octahedral faces of the maghemite crystals. The crystallographic relationship between maghemite and feroxyhyte is described by [1[1 with combining macron]0]·(222)mag||[010]·(002)fer.

Graphical abstract: Growth defects and epitaxy in Fe3O4 and γ-Fe2O3 nanocrystals

Supplementary files

Article information

Article type
Paper
Submitted
17 May 2013
Accepted
22 Jul 2013
First published
24 Jul 2013

CrystEngComm, 2013,15, 7539-7547

Growth defects and epitaxy in Fe3O4 and γ-Fe2O3 nanocrystals

A. Rečnik, I. Nyirő-Kósa, I. Dódony and M. Pósfai, CrystEngComm, 2013, 15, 7539 DOI: 10.1039/C3CE40873F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements