Issue 14, 2013

Minimising contributions from scattering in infrared spectra by means of an integrating sphere

Abstract

Mid-infrared spectra of biological matter such as tissues or microbial and eukaryotic cells measured in a transmission-type optical setup frequently show strongly distorted line shapes which arise from mixing of absorption and scattering contributions. Scattering-associated distorted line shapes may considerably complicate the analysis and interpretation of the infrared spectra and large efforts have been made to understand the mechanisms of scattering in biological matter and to compensate for spectral alterations caused by scattering. The goals of the present study were two-fold: firstly, to get a deeper understanding of the physics of scattering of biological systems and to explore how physical parameters of the scatterers such as shape, size and refractive index influence the line shape distortions observed. In this context, simulations based on the full Mie scattering formalism for spherical particles were found to be useful in explaining the characteristics of the Mie scatter-associated distortions and yielded a size criterion for the scattering particles similar to the well-known near field criterion. The second objective of the study was to investigate whether alternative optical setups allow minimisation of the effects of scattering. For this purpose, an optical system is proposed which is composed of an integrating sphere unit originally designed for diffuse reflection measurements, an off-axis DLaTGS detector to collect scattered and transmitted light components and a commercial Fourier transform infrared (FTIR) spectrometer. In the context of this study transmission type (tt-) FTIR spectra and spectra acquired by means of the integrating sphere setup (is-FTIR) were acquired from monodisperse poly(methyl) methacrylate (PMMA) microspheres of systematically varying sizes. The tt-FTIR spectral data of different PMMA particles confirmed earlier observations such as the presence of size-dependent oscillating spectral baselines, peak shifts, or derivative-like spectral line shapes. Such effects could be dramatically minimised when is-FTIR spectra were acquired by the integrating sphere unit. Utilisation of an integrating sphere is suggested as a convenient and easy-to use alternative to computer-based methods of scatter correction.

Graphical abstract: Minimising contributions from scattering in infrared spectra by means of an integrating sphere

Supplementary files

Article information

Article type
Paper
Submitted
22 Feb 2013
Accepted
05 Jun 2013
First published
05 Jun 2013

Analyst, 2013,138, 4191-4201

Minimising contributions from scattering in infrared spectra by means of an integrating sphere

A. Dazzi, A. Deniset-Besseau and P. Lasch, Analyst, 2013, 138, 4191 DOI: 10.1039/C3AN00381G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements