Skip to main content
Log in

Evaluation of the Hg2+ binding potential of fulvic acids from fluorescence excitation—emission matrices

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The effect of Hg2+ on the fluorescence intensity of three fulvic acids (Pahokee Peat, Pony Lake and Suwannee River) was studied. The fluorescence intensity decreased in the presence of added Hg2+, while the fluorescence lifetimes were independent of the concentration of Hg2+ in solution. These results are indicative of ground-states association between the fulvic acids and Hg2+ with formation of stable non-fluorescent complexes (static quenching process). The analysis of the excitation–emission matrices with the Singular Value Decomposition (SVD) and Multivariate Curve Resolution–Alternating Least Squares (MCR-ALS) methods provided additional valuable information regarding the binding properties between Hg2+ ions and specific fluorescence components of the fulvic acids. The three fulvic acids were shown to contain the same three groups of fluorophores characterized by excitation/emission pairs in the following regions: (320–330 nm/425–450 nm), (370–375 nm/465–500 nm), (290–295 nm/370–395 nm). These pairs are almost not affected by the change of pH from 2.0 to 7.0. Ryan–Weber and modified Stern–Volmer methods were used to analyze the static fluorescence quenching of the individual components. Similar conditional stability constants of Hg2+ binding for the three components were found by both methods. The obtained log K values are in the range of 4.4 to 5.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DOM:

Dissolved organic matter

EEM:

Excitation–emission matrices

FA:

Fulvic acid

HA:

Humic acid

HS:

Humic substances

IHSS:

International Humic Substance Society

M w:

Molecular weight

MCR-ALS:

Multivariate Curve Resolution–Alternating Least Squares

PP:

Pahokke Peat

PARAFAC:

Parallel Factor Analysis

PL:

Pony Lake

SDV:

Singular Value Decomposition

SR:

Suwannee River

References

  1. N. Hertkorn, H. Claus, P. H. Schmitt-Kopplin, E. M. Perdue, Z. Filip, Utilization and transformation of aquatic humic substances by autochthonous microorganisms, Environ. Sci. Technol., 2002, 36, 4334–4345.

    Article  CAS  Google Scholar 

  2. S. McDonald, A. G. Bishop, P. D. Prenzler, K. Robards, Analytical chemistry of freshwater humic substances, Anal. Chim. Acta, 2004, 527, 105–124.

    Article  CAS  Google Scholar 

  3. P. Janoš, Separation methods in the chemistry of humic substances, J. Chromatogr., A, 2003, 983, 1–18.

    Article  Google Scholar 

  4. T. D. Gauthier, E. C. Shane, W. F. Guerln, W. R. Seilz, C. L. Grant, Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials, Environ. Sci. Technol., 1986, 20, 1162–1166.

    Article  CAS  Google Scholar 

  5. F. Fang, S. Kanan, H. H. Patterson, C. S. Cronan, A spectrofluorimetric study of the binding of carbofuran, carbaryl, and aldicarb with dissolved organic matter, Anal. Chim. Acta, 1998, 373, 139–151.

    Article  CAS  Google Scholar 

  6. X. Lu, R. Jaffe, Interaction between Hg(ii) and natural dissolved organic matter: a fluorescence spectroscopy based study, Water Res., 2001, 35, 1793–1803.

    Article  CAS  Google Scholar 

  7. F. C. Wu, Y. R. Cai, R. D. Evans, P. Dillon, Complexation between Hg(ii) and dissolved organic matter in stream waters: an application of fluorescence spectroscopy, Biogeochemistry, 2004, 71, 339–351.

    Article  CAS  Google Scholar 

  8. Y. Cai, R. Jaffe, R. D. Jones, Interactions between dissolved organic carbon and mercury species in surface waters of the Florida Everglades, Appl. Geochem., 1999, 14, 395–407.

    Article  CAS  Google Scholar 

  9. J. Wu, H. Zhang, P. J. He, L. M. Shao, Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis, Water Res., 2011, 45, 1711–1719.

    Article  CAS  Google Scholar 

  10. J. C. G. Esteves da Silva, C. J. S. Oliveira, Metal ion complexation properties of fulvic acids extracted from composted sewage sludge as compared to a soil fulvic acid, Water Res., 2002, 36, 3404–3409.

    Article  CAS  Google Scholar 

  11. R. J. Yang, C. M. G. van den Berg, Metal complexation by humic substances in sea water, Environ. Sci. Technol., 2009, 43, 7192–7197.

    Article  CAS  Google Scholar 

  12. D. Hernandez, C. Plaza, N. Senesi, A. Polo, Detection of copper(ii) and zinc(ii) binding to humic acids from pig slurry and amended soils by fluorescence spectroscopy, Environ. Pollut., 2006, 143, 212–220.

    Article  CAS  Google Scholar 

  13. A. M. Martensson, C. Aulin, O. Wahlberg, S. Agren, Effect of humic substances on the mobility of toxic metals in a mature landfill, Waste Manage. Res., 1999, 17, 296–304.

    Article  CAS  Google Scholar 

  14. A. Terbouche, S. Djebbar, O. Benali-Baitich, G. Bouet, Characterization and complexing capacity of humic acid extracted from Yakouren soil with heavy metals by conductimetry and quenching of fluorescence, Soil Sediment Contam., 2010, 19, 21–41.

    Article  CAS  Google Scholar 

  15. J. C. G. Esteves da Silva, A. A. S. C. Machado, C. J. S. Oliveira, M. S. S. D. S. Pinto, Fluorescence quenching of anthropogenic fulvic acids by Cu(ii), Fe(iii) and UO22+, Talanta, 1998, 45, 1155–1165.

    Article  CAS  Google Scholar 

  16. D. K. Ryan, J. H. Weber, Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid, Anal. Chem., 1982, 54, 986–990.

    Article  CAS  Google Scholar 

  17. D. K. Ryan, J. H. Weber, Copper(ii) complexing capacities of natural waters by fluorescence quenching, Environ. Sci. Technol., 1982, 16, 866–872.

    Article  CAS  Google Scholar 

  18. IHSS, International Humic Substance Society, http://www.humicsubstances.org

  19. F. S. García Einschlag, KINESIM 9.5, Software for Kinetic and Spectrophotometric Analysis, Argentina, 2005.

    Google Scholar 

  20. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publisher, New York, U.S.A., 2nd edn, 1999, ch. 8, pp. 238–264.

    Book  Google Scholar 

  21. S. S. Leher, Solute perturbation of protein fluorescence. Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion, Biochemistry, 1971, 10, 3254–3253.

    Article  Google Scholar 

  22. C. Xiaoli, L. Guixiang, Z. Xin, H. Yongxia, Z. Youcai, Complexion between mercury and humic substances from different landfill stabilization processes and its implication for the environment, J. Hazard. Mater., 2012, 209–210, 59–66.

    Google Scholar 

  23. Y. C. Bai, F. C. Wu, C. Q. Liua, W. Lia, J. Y. Guoa, P. Q. Fua, B. S. Xing, J. Zheng, Ultraviolet absorbance titration for determining stability constants of humic substances with Cu(ii) and Hg(ii), Anal. Chim. Acta, 2008, 616, 115–121.

    Article  CAS  Google Scholar 

  24. Y. P. Chin, G. Alken, E. O’Loughlin, Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances, Environ. Sci. Technol., 1994, 28, 1853–1858.

    Article  CAS  Google Scholar 

  25. C. Guéguen, C. W. Cuss, Characterization of aquatic dissolved organic matter by asymmetrical flow field-flow fractionation coupled to UV–Visible diode array and excitation emission matrix fluorescence, J. Chromatogr., A, 2011, 1218, 4188–4198.

    Article  Google Scholar 

  26. A. Brown, D. M. McKnight, Y. P. Chin, E. C. Roberts, M. Uhle, Chemical characterization of dissolved organic material in Pony Lake, a saline coastal pond in Antarctica, Mar. Chem., 2004, 89, 327–337.

    Article  CAS  Google Scholar 

  27. R. A. Mignone, M. V. Martin, F. E. Morán Vieyra, V. I. Palazzi, B. López de Mishima, D. O. Mártire, C. D. Borsarelli, Modulation of optical properties of dissolved humic substances by their molecular complexity, Photochem. Photobiol., 2012, 88, 792–800.

    Article  CAS  Google Scholar 

  28. D. S. Smith, R. A. Bell, J. R. Kramer, Metal speciation in natural waters with emphasis on reduced sulfur groups as strong metal binding sites, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2002, 133, 65–74.

    Google Scholar 

  29. K. Gårdfeldt, M. Jonsson, Is bimolecular reduction of Hg(ii) complexes possible in aqueous systems of environmental importance, J. Phys. Chem. A, 2003, 107, 4478–4482.

    Article  Google Scholar 

  30. K. J. Powell, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, S. Sjöberg, H. Wanner, Chemical speciation of environmentally significant heavy metals with inorganic ligands part 1: The Hg2+, Cl, OH, CO32−, SO42−, and PO43− aqueous systems, Pure Appl. Chem., 2005, 77, 739–800.

    Article  CAS  Google Scholar 

  31. W. Stumm and J. J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, Wiley, New York, U.S.A., 3rd edn, 1996.

    Google Scholar 

  32. U. Skyllberg, K. Xia, P. R. Bloom, E. A. Nater, W. F. Bleam, Binding of mercury(ii) to reduced sulfur in soil organic matter along upland-peat soil transects, J. Environ. Qual., 2000, 29, 855–865.

    Article  CAS  Google Scholar 

  33. W. Dong, Y. Bian, L. Y. Liang, B. Gu, Binding constants of mercury and dissolved organic matter determined by a modified ion exchange technique, Environ. Sci. Technol., 2011, 45, 3576–3583.

    Article  CAS  Google Scholar 

  34. L. D. Pettit and K. J. Powell, IUPAC Stability Constants Database, version 4.11, Academic Software, Yorks, U.K., 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fernando S. García Einschlag or Daniel O. Mártire.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c2pp25280e

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkovic, A.M., García Einschlag, F.S., Gonzalez, M.C. et al. Evaluation of the Hg2+ binding potential of fulvic acids from fluorescence excitation—emission matrices. Photochem Photobiol Sci 12, 384–392 (2013). https://doi.org/10.1039/c2pp25280e

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25280e

Navigation