Skip to main content
Log in

A theoretical study of thionine: spin—orbit coupling and intersystem crossing

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A study of the possible intersystem crossing (ISC) mechanisms (S ⇝ T) in thionine (3,7-diamino-phenothiazin-5-ium), which is conducive to the efficient population of the triplet manifold, is presented. The radiationless deactivation channels {S1,S2(π → π*) ⇝ T1,T2(π → π*)} have been examined. Since the direct ISC does not explain the high triplet quantum yield in this system, attention has been centered on the vibronic spin—orbit coupling between the low-lying singlet and triplet (π → π*) states of interest. An efficient population transfer from the S1H → πL*) state to the T2H-1 → πL*) state via this channel is confirmed. The calculated ISC rate constant for this channel is kISC ≈ 3.35 × 108 s−1, which can compete with the radiative depopulation of the S1H → πL*) state via fluorescence (kF ≈ 1.66 × 108 s−1) in a vacuum. The S1H → πL*) ⇝ T1H → πL*) and {S2H-1 → πL*) ⇝ T1,T2(π → π*)} ISC channels have been estimated to be less efficient (kISC ≈ 105–106 s−1). Based on the computed ISC rate constants and excited-state solvent shifts, it is suggested that the efficient triplet quantum yield of thionine in water is primarily due to the S1H → πL*) ⇝ T2H-1 → πL*) channel with a computed rate constant of the order of 108–109 s−1 which is in accord with the experimental finding (kISC = 2.8 × 109 s−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. M. Gangotri and R. C. Meena, Use of reductant and photosensitizer in photogalvanic cells for solar energy conversion and storage: oxalic acid–methylene blue system, J. Photochem. Photobiol., 2001, 141–175.

    Google Scholar 

  2. C. Lal, Use of mixed dyes in a photogalvanic cell for solar energy conversion and storage: EDTA–thionine–azur-B system, J. Power Sources, 2004, 164, 926.

    Article  Google Scholar 

  3. F. Harris, Z. Sayed, S. Hussain and D. A. Phoenix, An investigation into potential of phenothiazinium-based photo-sensitisers to act as PDT agents, Photodiagn. Photodyn. Ther., 2004, 1, 231.

    Article  CAS  Google Scholar 

  4. J. P. Tardivo, A. Del Giglio, C. Santos de Oliveira, D. Santesso Gabrielli, H. Couto Junqueira, D. Batista Tadab, D. Severino, R. de Fatima Turchiello and M. S. Baptista, Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications, Photodiagn. Photodyn. Ther., 2005, 2, 175.

    Article  CAS  Google Scholar 

  5. E. M. Tuite and J. M. Kelly, Photochemical reactions of methylene blue and analogues with DNA and other biological substrates, J. Photochem. Photobiol., B, 1993, 21, 103.

    Article  CAS  Google Scholar 

  6. H. E. A. Kramer and A. Maute, Sensitized photooxygenation according to type I mechanism (radical mechanism)–part I. Flash photolysis experiments, Photochem. Photobiol., 1972, 15, 7.

    Article  CAS  Google Scholar 

  7. D. R. Kearns, Physical and chemical properties of singlet molecular oxygen, Chem. Rev., 1971, 71, 395.

    Article  CAS  Google Scholar 

  8. A. Rodriguez-Serrano, M. C. Daza, M. Doerr and C. M. Marian, A quantum chemical investigation of the electronic structure of thionine, Photochem. Photobiol. Sci., 2012, 11, 397.

    Article  CAS  Google Scholar 

  9. F. Furche and R. Ahlrichs, Adiabatic time-dependent density functional methods for excited state properties, J. Chem. Phys., 2002, 117, 7433.

    Article  CAS  Google Scholar 

  10. S. Grimme and M. Waletzke, A combination of Kohn–Sham density functional theory and multi-reference configuration interaction methods, J. Chem. Phys., 1999, 111, 5645.

    Article  CAS  Google Scholar 

  11. L. F. Epstein, F. Karush and E. Rabinowitch, A spectrophotometric study of thionine, J. Opt. Soc. Am., 1941, 31, 77.

    Article  CAS  Google Scholar 

  12. M. Nemoto, H. Kokubun and M. Koizumi, Determination of S*–T transition probabilities of some xantene and thiazine dyes on the basis of T-energy transfer. II. Results in the aqueous solution, Bull. Chem. Soc. Jpn, 1969, 42, (1223) 2464.

    Article  CAS  Google Scholar 

  13. M. G. Neumann and M. J. Tiera, The use of basic dyes as photochemical probes, Química Nova, 1993, 16, (4) 280.

    CAS  Google Scholar 

  14. S. Das and P. V. Kamat, Can H-aggregates serve as light-harvesting antennae? Triplet–triplet energy transfer between excited aggregates and monomer thionine in aersol-OT solutions, J. Phys. Chem. B, 1999, 103, 209.

    Article  CAS  Google Scholar 

  15. E. Rabinowitch and L. F. Epstein, Polymerization of dyestuffs in solution. Thionine and methylene blue, J. Am. Chem. Soc., 1941, 63, 69.

    Article  CAS  Google Scholar 

  16. G. R. Haugen and E. R. Hardwick, Ionic association in aqueous solutions of thionine, J. Phys. Chem., 1963, 67, 725.

    Article  CAS  Google Scholar 

  17. G. R. Haugen and E. R. Hardwick, Ionic association in solutions of thionine. II. Fluorescence and solvent effects, J. Phys. Chem., 1965, 69, 2988.

    Article  CAS  Google Scholar 

  18. M. D. Archer, M. I. C. Ferreira, G. Porter and C. J. Tredwell, Picosecond study of Stern–Volmer quenching of thionine by ferrous ions, Nouv. J. Chim., 1977, 1, 9.

    CAS  Google Scholar 

  19. U. Steiner, G. Winter and H. E. A. Kramer, Investigation of physical triplet quenching by electron donors, J. Phys. Chem., 1977, 81, 1104.

    Article  CAS  Google Scholar 

  20. S. K. Lower, M. A. El-Sayed, The triplet state and molecular electronic processes in organic molecules, Chem. Rev., 1966, 66, 199.

    Article  CAS  Google Scholar 

  21. J. Tatchen, N. Gilka and C. M. Marian, Intersystem crossing driven by vibronic spin–orbit coupling: a case study on psoralen, Phys. Chem. Chem. Phys., 2007, 9, 5209.

    Article  CAS  Google Scholar 

  22. S. Salzmann, J. Tatchen and C. M. Marian, The photophysics of flavins: What makes the difference between gas phase and aqueous solution?, J. Photochem. Photobiol., A, 2008, 198, 221.

    Article  CAS  Google Scholar 

  23. S. Perun, J. Tatchen and C. M. Marian, Singlet and triplet excited states and intersystem crossing in free-base porphyrin: TDDFT and DFT/MRCI study, ChemPhysChem, 2008, 9, 282.

    Article  CAS  Google Scholar 

  24. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648.

    Article  CAS  Google Scholar 

  25. P. A. M. Dirac, Quantum mechanics of many-electron systems, Proc. R. Soc. London, Ser. A, 1929, 123, 714.

    Article  CAS  Google Scholar 

  26. A. Schäfer, C. Huber and R. Ahlrichs, Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr, J. Chem. Phys., 1994, 100, 5829.

    Article  Google Scholar 

  27. TURBOMOLE V6.3 2011, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.

  28. C. Kind, M. Reiher and J. Neugebauer, SNF Version 2.2.1: A Program Package for Numerical Frequency Analyses, Universität Erlangen, 1999–2002.

    Google Scholar 

  29. J. Tatchen, Spin-verbotene photophysikalische Prozesse in organischen Molekuelen: Entwicklung quantenchemischer Methoden und Anwendung auf Psoralene, PhD thesis, Universität Düsseldorf, Germany, 2005.

    Google Scholar 

  30. P. A. M. Dirac, The quantum theory of the emission and absorption of radiation, Proc. R. Soc. London, Ser. A, 1927, 114, 243.

    Article  CAS  Google Scholar 

  31. G. Wentzel, Über strahlungslose Quantensprünge, Z. Phys., 1927, 43, 524.

    Article  CAS  Google Scholar 

  32. M. Kleinschmidt, J. Tatchen and C. M. Marian, Spin–orbit coupling of DFT/MRCI wavefunctions: method, test calculations, and application to thiophene, J. Comput. Chem., 2002, 23, 824.

    Article  CAS  Google Scholar 

  33. M. Kleinschmidt and C. M. Marian, Efficient generation of matrix elements for one-electron spin–orbit operators, Chem. Phys., 2005, 311, 71.

    Article  CAS  Google Scholar 

  34. M. Kleinschmidt, J. Tatchen and C. M. Marian, SPOCK.CI: a multireference spin–orbit configuration interaction method for large molecules, J. Chem. Phys., 2006, 124, 124101.

    Article  Google Scholar 

  35. B. A. Heß, C. M. Marian, U. Wahlgren and O. Gropen, A mean-field spin–orbit method applicable to correlated wavefunctions, Chem. Phys. Lett., 1996, 251, 365.

    Article  Google Scholar 

  36. N. J. Turro, V. Ramamurthy and J. C. Scaiano, Principles of Molecular Photochemistry: An Introduction, University Science Books, Sausalito, CA, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christel M. Marian.

Additional information

Electronic supplementary information (ESI) available: Collection of results with regard to the sensitivity of the calculated ISC rate constants to different technical parameters. See DOI: 10.1039/c2pp25224d

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Serrano, A., Rai-Constapel, V., Daza, M.C. et al. A theoretical study of thionine: spin—orbit coupling and intersystem crossing. Photochem Photobiol Sci 11, 1860–1867 (2012). https://doi.org/10.1039/c2pp25224d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25224d

Navigation