Skip to main content
Log in

Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

For optically complex turbid productive waters, the optical behavior of suspended particles is the keynote of characterizing the unordered variations of inherent optical properties (IOPs). Multiple bio-optical measurements and sampling of optically active substances were performed in Lake Taihu, Lake Chaohu, and Lake Dianchi, and Three Gorges reservoir of China, in 2008, 2009, and 2010. On the basis of obtaining adequate observation data, we developed an improved and robust water classification approach, by which complex water conditions were divided into three types, i.e., Type 1 (Normalized Trough Depth at 675 nm, hereafter NTD675, ≥ 0.092), Type 2 (0 < NTD675 < 0.092), and Type 3 (NTD675 ≤ 0). Furthermore, the specific inherent optical quantities for suspended particles, including the specific absorption coefficient of non-algal particles (a*nap), the specific absorption coefficient of phytoplankton (a*ph), and the specific scattering coefficient of the suspended particles (b*p), were determined for the three classified types of waters. The validation results showed that our proposed values for these specific inherent optical quantities presented relatively high predictive accuracies, with most mean absolute percentage errors (MAPE) near 30%, and more importantly, performed much better than that of non-classified waters. Additionally, relative contributions of phytoplankton and non-algal particles to the total particulate absorption and scattering, as well as the spectra, were also analyzed, and the differences among the three classified types of waters were clarified. Overall, the results obtained in this study provide us with new knowledge for understanding complex varied inherent optical properties of highly turbid productive waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters, Academic Press, New York, 1994,.

    Google Scholar 

  2. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, A semianalytic radiance model of ocean color, J. Geophys. Res., 1988, D93, 10909–10924.

    Article  Google Scholar 

  3. A. Morel, B. Gentili, Diffuse reflectance of oceanic waters. II. Bidirectional aspects, Appl. Opt., 1993, 32, 6864–6879.

    Article  CAS  PubMed  Google Scholar 

  4. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, J. S. Patch, Hyperspectral remote sensing for shallow waters. I. A semianalytical model, Appl. Opt., 1998, 37, 6329–6338.

    Article  CAS  PubMed  Google Scholar 

  5. J. J. Cullen, On models of growth and photosynthesis in phytoplankton, Deep-Sea Res., Part A, 1990, 37, 667–683.

    Article  CAS  Google Scholar 

  6. J. J. Cullen, Plankton: Primary production methods, in Encyclopedia of Ocean Sciences, ed. J. Steele, S. Thorpe and K. Turekian, Academic Press, 2001, pp. 2277–2284.

    Chapter  Google Scholar 

  7. K. R. Arrigo, P. A. Matrai, G. L. van Dijken, Primary productivity in the Arctic Ocean: impacts of complex optical properties and subsurface chlorophyll maxima on large-scale estimates, J. Geophys. Res., 2011, 116, C11022.

    Article  CAS  Google Scholar 

  8. P. G. Falkowski, and J. A. Raven, Aquatic Photosynthesis, Blackwell Science, 1997, p. 375.

    Google Scholar 

  9. E. A. Loos, M. Costa, Inherent optical properties and optical mass classification of the waters of the Strait of Georgia, British Columbia, Canada, Prog. Oceanogr., 2010, 87, 144–156.

    Article  Google Scholar 

  10. M. J. Behrenfeld, E. Boss, D. A. Siegel, D. M. Shea, Carbon-based ocean productivity and phytoplankton physiology from space, Global Biogeochem. Cycles, 2005, 19, GB1006.

    Article  CAS  Google Scholar 

  11. C. A. Carlson, Production and Consumption Processes, in Biogeochemistry of Dissolved Organic Matter in the Ocean, ed. D. A. Hansell and C. A. Carlson, Academic Press, San Diego, 2002, pp. 91–151.

    Chapter  Google Scholar 

  12. T. Hirawake, S. Takao, N. Horimoto, T. Ishimaru, Y. Yamaguchi, M. Fukuchi, A phytoplankton absorption-based primary productivity model for remote sensing in the Southern Ocean, Polar Biol., 2011, 34, 291–302.

    Article  Google Scholar 

  13. A. Reinart, B. Paavel, D. Pierson, N. Strombeck, Inherent and apparent optical properties of Lake Peipsi, Estonia, Boreal Environ. Res., 2004, 9, 429–445.

    Google Scholar 

  14. R. Sommaruga, Y. Chen, Z. Liu, Multiple strategies of bloom-forming microcystis to minimize damage by solar ultraviolet radiation in surface waters, Microb. Ecol., 2009, 57, 667–674.

    Article  PubMed  Google Scholar 

  15. A. Bricaud, M. Babin, H. Claustre, J. Ras, F. Tièche, Light absorption properties and absorption budget of Southeast Pacific waters, J. Geophys. Res., 2010, 115, C08009.

    Google Scholar 

  16. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, D. Stramski, Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration, Limnol. Oceanogr., 2003a, 48, 2, 843–859.

    Article  Google Scholar 

  17. D. Y. Sun, Y. M. Li, Q. Wang, C. F. Le, C. C. Huang, L. Z. Wang, Parameterization of water component absorption in inland entrophic lake and its seasonal variability, a case study in Lake Taihu, Int. J. Remote Sens., 2009b, 30, 3549–3571.

    Article  Google Scholar 

  18. D. Y. Sun, Y. M. Li, Q. Wang, C. F. Le, C. C. Huang, S. Q. Gong, Partitioning particulate scattering and absorption into contributions of phytoplankton and non-algal particles in winter in Lake Taihu (China), Hydrobiologia, 2010, 644, 337–349.

    Article  CAS  Google Scholar 

  19. H. R. Gordon, and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, Springer, 1983,.

    Book  Google Scholar 

  20. E. T. Baker, J. W. Lavelle, The effect of particles size on the light attenuation coefficient of natural suspensions, J. Geophys. Res., 1984, 89, 8197–8203.

    Article  Google Scholar 

  21. A. Hofmann, J. Dominik, Turbidity and mass concentration of suspended matter in lake water: a comparison of two calibration methods, Aquat. Sci., 1995, 57, 54–69.

    Article  Google Scholar 

  22. E. T. Baker, D. A. Tennant, R. A. Feely, G. T. Lebon, S. L. Walker, Field and laboratory studies on the effect of particle size and composition on optical backscattering measurements in hydrothermal plumes, Deep-Sea Res., Part I, 2001, 48, 593–604.

    Article  CAS  Google Scholar 

  23. A. Bricaud, A. Morel, L. Prieur, Optical efficiency factors of some phytoplankters, Limnol. Oceanogr., 1983, 28, 816–832.

    Article  Google Scholar 

  24. R. R. Bidigare, M. E. Ondrusek, J. H. Morrow, D. A. Kiefer, In vivo absorption properties of algal pigments, SPIE, Ocean Opt., 1990, 1302, 290–302.

    Article  Google Scholar 

  25. C. F. Le, Y. M. Li, Y. Zha, D. Y. Sun, Specific absorption coefficient and the phytoplankton package effect in Lake Taihu, China, Hydrobiologia, 2009, 619, 27–37.

    Article  CAS  Google Scholar 

  26. A. Bricaud, M. Babin, A. Morel, H. Claustre, Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization, J. Geophys. Res., 1995, 100, C7, 13321–13332.

    Article  Google Scholar 

  27. A. Bricaud, H. Claustre, J. Ras, K. Oubelkheir, Natural variability of phytoplanktonic absorption in oceanic waters: influence of the size structure of algal populations, J. Geophys. Res., 2004, 109, 1–12.

    Google Scholar 

  28. A. Matsuoka, V. Hill, Y. Huot, M. Babin, A. Bricaud, Seasonal variability in the light absorption properties of western Arctic waters: parameterization of the individual components of absorption for ocean color applications, J. Geophys. Res., 2011, 116, C02007.

    Google Scholar 

  29. R. J. Davies-Colley, W. N. Vant, Absorption of light by yellow substance in freshwater lakes, Limnol. Oceanogr., 1987, 32, 416–425.

    Article  CAS  Google Scholar 

  30. C. Belzile, W. F. Vincent, C. Howard-Williams, I. Hawes, M. R. James, M. Kumagai, C. S. Roesler, Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake, Water Resour. Res., 2004, 40, W12512.

    Article  CAS  Google Scholar 

  31. G. Dall’Olmo, A. Gitelson, Effect of bio-optical parameter variability on the remote estimation of chlorophyll a concentration in turbid productive waters: experimental results, Appl. Opt., 2005, 44, 3, 412–422.

    Article  PubMed  Google Scholar 

  32. G. Campbell, S. R. Phinn, P. Daniel, The specific inherent optical properties of three sub-tropical and tropical water reservoirs in Queensland, Australia, Hydrobiologia, 2011, 658, 233–252.

    Article  CAS  Google Scholar 

  33. W. Yang, B. Matsushita, J. Chen, T. Fukushima, Estimating constituent concentrations in case II waters from MERIS satellite data by semi-analytical model optimizing and look-up tables, Remote Sens. Environ., 2011, 115, 1247–1259.

    Article  Google Scholar 

  34. B. Q. Qin, W. P. Hu and W. M. Chen, The Process and Mechanism of Water Environment Evolvement in Taihu Lake, Science Press, Beijing, China, 2004,.

    Google Scholar 

  35. Y. N. Dai, S. J. Li, X. J. Wang, Measurement of analysis on the apparent optical properties of water in Chaohu Lake, Chin. Environ. Sci., 2008, 28, 11, 979–983.

    CAS  Google Scholar 

  36. N. Feng, F. Mao, X. Y. Li, A. D. Zhang, Research on ecological security assessment of Dian Lake, Environ. Sci., 2010, 31, 2, 282–286.

    Google Scholar 

  37. C. J. Lorenzen, Determination of chlorophyll and phaeopigments: spectrophotometric equations, Limnol. Oceanogr., 1967, 12, 343–346.

    Article  CAS  Google Scholar 

  38. Y. W. Chen, K. N. Chen, Y. H. Hu, Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method, J. Lake Sci., 2006, 18, 5, 550–552.

    Article  CAS  Google Scholar 

  39. X. Huang, Eco-Investigation, Observation and Analysis of Lakes, Standard Press of China, Beijing, 1999, pp. 77–99.

    Google Scholar 

  40. H. J. Gons, T. Burger-Wiersma, J. H. Otten, M. Rijkeboer, Coupling of phytoplankton and detritus in a shallow, eutrophic lake (Lake Loosdrecht, The Netherlands), Hydrobiologia, 1992, 233, 51–59.

    Article  CAS  Google Scholar 

  41. H. Buiteveld, A model for calculation of diffuse light attenuation (PAR) and secchi depth, Neth. J. Aquat. Ecol., 1995, 29, 55–65.

    Article  CAS  Google Scholar 

  42. J. Hoogenboom, A. G. Dekker, Simulation of the medium-resolution imaging spectrometer MERIS performance for detecting chlorophyll-a over turbid inland waters, Proc. SPIE-Int. Soc. Opt. Eng., 1997, 2963, 440–447.

    CAS  Google Scholar 

  43. Y. L. Zhang, B. Zhang, R. H. Ma, S. Feng, C. F. Le, Optically active substances and their contributions to the underwater light climate in Lake Taihu, a large shallow lake in China, Fundam. Appl. Limnol., 2007, 170, 11–19.

    Article  CAS  Google Scholar 

  44. J. L. Mueller, A. Morel, R. Frouin, C. Davis, R. Arnone, K. Carder, Z. P. Lee, R. G. Steward, S. Hooker, C. D. Mobley, S. McLean, B. Holben, M. Miller, C. Pietras, K. D. Knobelspiesse, G. S. Fargion, J. Porter and K. Voss, Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume III: Radiometric Measurements and Data Analysis Protocols, Greenbelt, Maryland, 2003,.

    Google Scholar 

  45. J. W. Tang, G. L. Tian, X. Y. Wang, X. M. Wang, Q. J. Song, Methods of water spectra measurement and analysis I: above water method, J. Remote Sens., 2004, 8, 1, 37–44.

    Google Scholar 

  46. B. G. Mitchell, Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT), Proc. SPIE-Int. Soc. Opt. Eng., 1990, 1302, 137–148.

    Google Scholar 

  47. J. S. Cleveland, A. D. Weidemann, Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters, Limnol. Oceanogr., 1993, 38, 1321–1327.

    Article  CAS  Google Scholar 

  48. M. Kishino, N. Takahashi, N. Okami, S. Ichimura, Estimation of the spectral absorption coefficients of phytoplankton in the sea, Bull. Marine Sci., 1985, 37, 634–642.

    Google Scholar 

  49. H. Sasaki, T. Miyamura, S. Saitoh, et al., Seasonal variation of absorption by particles and colored dissolved organic matter (CDOM) in Funka Bay, southwestern Hokkaido, Japan, Estuarine, Coastal Shelf Sci., 2005, 64, 2/3, 447–458.

    Article  Google Scholar 

  50. C. Moore, A. Barnard, D. Hankins, et al., Spectral Absorption and Attenuation Meter (ac-s) User’s Guide, Revision A, WET Labs Inc, America, 2004, pp. 5–20.

    Google Scholar 

  51. J. R. V. Zaneveld, J. C. Kitchen and C. M. Moore, in The Scattering Error Correction of Reflecting-Tube Absorption Meters, ed. S. Ackleson, Ocean Optics XII, Proc. SPIE 2258, 1994, pp. 44–55.

  52. D. Y. Sun, Y. M. Li, Q. Wang, J. Gao, H. Lv, C. F. Le, C. C. Huang, Light scattering properties and their relation to the biogeochemical composition of turbid productive waters: a case study of Lake Taihu, Appl. Opt., 2009, 48, 11, 1979–1989.

    Article  CAS  PubMed  Google Scholar 

  53. S. Sathyendranath, L. Prieur, A. Morel, A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters, Int. J. Remote Sens., 1989, 10, 1373–1394.

    Article  Google Scholar 

  54. D. C. Pierson, S. Kratzer, N. Strömbeck, B. Håkansson, Relationship between the attenuation of downwelling irradiance at 490 nm with the attenuation of PAR (400 nm-700 nm) in the Baltic Sea, Remote Sens. Environ., 2008, 112, 668–680.

    Article  Google Scholar 

  55. Y. H. Ahn, A. Bricaud, A. Morel, Light backscattering efficiency and related properties of some phytoplankters, Deep-Sea Res., Part A, 1992, 39, 1835–1855.

    Article  Google Scholar 

  56. R. J. Davies-Colley, R. D. Pridmore, J. E. Hewitt, Optical properties of some freshwater phytoplanktonic algae, Hydrobiologia, 1986, 133, 165–178.

    Article  Google Scholar 

  57. B. Lubac, H. Loisel, Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea, Remote Sens. Environ., 2007, 110, 45–58.

    Article  Google Scholar 

  58. G. Oron, A. Gitelson, Real-time quality monitoring by remote sensing of contaminated water-bodies: waste stabilization pond effluent, Water Res., 1996, 30, 3106–3114.

    Article  CAS  Google Scholar 

  59. H. R. Gordon, Diffusive reflectance of the ocean: the theory of its augmentation by chlorophyll-a fluorescence at 685 nm, Appl. Opt., 1979, 18, 1161–1166.

    Article  CAS  PubMed  Google Scholar 

  60. A. Vasilkov, O. Kopelevich, Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer, Oceanology, 1982, 22, 697–701.

    Google Scholar 

  61. A. A. Gitelson, The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration, Int. J. Remote Sens., 1992, 13, 3367–3373.

    Article  Google Scholar 

  62. H. M. Dierssen, J. P. Ryan, R. C. Zimmerman, Red and black tides: quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments, Limnol. Oceanogr., 2006, 51, 6, 2646–2659.

    Article  Google Scholar 

  63. K. G. Ruddick, V. D. Cauwer, Y.-J. Park, Seaborne measurements of near infrared water-leaving reflectance: the similarity spectrum for turbid waters, Limnol. Oceanogr., 2006, 51, 1167–1179.

    Article  Google Scholar 

  64. M. Doron, S. Bélanger, D. Doxaran, M. Babin, Spectral variations in the near-infrared ocean reflectance, Remote Sens. Environ., 2011, 15, 1617–1631.

    Article  Google Scholar 

  65. D. Y. Sun, Y. M. Li, Q. Wang, H. Lv, C. F. Le, C. C. Huang, S. Q. Gong, Detection of suspended matter concentrations in the shallow subtropical Lake Taihu, China, using the SVR model based on DSFs, IEEE Geosci. Remote Sens. Lett., 2010, 4, 816–820.

    Article  Google Scholar 

  66. Z. P. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, C. O. Davis, Model for the interpretation of hyperspectral remote-sensing reflectance, Appl. Opt., 1994, 33, 5721–5732.

    Article  CAS  PubMed  Google Scholar 

  67. A. A. Gitelson, J. F. Schalles, C. M. Hladik, Remote chlorophyll-a retrieval in turbid, productive estuaries: Cheapeake Bay case study, Remote Sens. Environ., 2007, 109, 464–472.

    Article  Google Scholar 

  68. C. S. Roesler, M. J. Perry, In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance, J. Geophys. Res., 1995, 100, C7, 13279–13294.

    Article  Google Scholar 

  69. Y. L. Zhang, M. L. Liu, B. Q. Qin, H. J. Woerd, J. S. Li, Y. L. Li, Modeling remote-sensing reflectance and retrieving Chlorophyll-a concentration in extremely turbid Case-2 waters (Lake Taihu, China), IEEE Trans. Geosci. Remote Sens., 2009, 47, 7, 1937–1948.

    Article  Google Scholar 

  70. D. Y. Sun, Y. M. Li, Q. Wang, C. F. Le, C. C. Huang, K. Shi, Development of optical criteria to discriminate various types of highly turbid lake waters, Hydrobiologia, 2011, 669, 83–104.

    Article  Google Scholar 

  71. M. Babin, D. Stramski, G. M. Ferrari, H. Glaustre, A. Bricaud, G. Obolensky, N. Hoepffner, Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe, J. Geophys. Res., 2003, 108, 1–20.

    Google Scholar 

  72. Y. L. Zhang, M. L. Liu, M. A. van Dijk, G. W. Zhu, Z. J. Gong, Y. L. Li, B. Q. Qin, Measured and numerically partitioned phytoplankton spectral absorption coefficients in inland waters, J. Plankton Res., 2009, 3, 311–323.

    Google Scholar 

  73. A. Bricaud, A. Morel, M. Babin, K. Allali, H. Claustre, Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models, J. Geophys. Res., 1998, 103, 31033–31044.

    Article  Google Scholar 

  74. Q. J. Song, J. W. Tang, The study on the scattering properties in the Huanghai Sea and East China Sea, Acta Oceanol. Sin., 2006, 28, 56–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyong Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, D., Li, Y., Wang, Q. et al. Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification. Photochem Photobiol Sci 11, 1299–1312 (2012). https://doi.org/10.1039/c2pp25061f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25061f

Navigation