Issue 35, 2012

Prediction of 3-hydroxypyridin-4-one (HPO) log K1 values for Fe(iii)

Abstract

As a means to aid in the design of 3-hydroxypyridin-4-ones (HPOs) intended for use as therapeutic Fe3+ chelating agents, a novel methodology has been developed using quantum mechanical (QM) calculations for predicting the iron binding affinities of the compounds (more specifically, their log K1 values). The reported/measured HPO log K1 values were verified through their correlation with the corresponding sum of the compounds’ ligating group pKa values. Using a training set of eleven HPOs with known log K1 values, reliable predictions are shown to be obtained with QM calculations using the B3LYP/6-31+G(d)/CPCM model chemistry (with Bondi radii, and water as solvent). With this methodology, the observed log K1 values for the training set compounds are closely matched by the predicted values, with the correlation between the observed and predicted values giving r2 = 0.9. Predictions subsequently made by this method for a test set of 42 HPOs of known log K1 values gave predicted values accurate to within ±0.32 log units. In order to further investigate the predictive power of the method, four novel HPOs were synthesised and their log K1 values were determined experimentally. Comparison of these predicted log K1 values against the measured values gave absolute deviations of 0.22 (13.87 vs. 14.09), 0.02 (14.31 vs. 14.29), 0.12 (14.62 vs. 14.50), and 0.13 (15.04 vs. 15.17). The prediction methodology reported here is the first to be provided for predicting the absolute log K1 values of iron-chelating agents in the absence of pKa values.

Graphical abstract: Prediction of 3-hydroxypyridin-4-one (HPO) log K1 values for Fe(iii)

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2012
Accepted
17 Jul 2012
First published
18 Jul 2012

Dalton Trans., 2012,41, 10784-10791

Prediction of 3-hydroxypyridin-4-one (HPO) log K1 values for Fe(III)

Y. Chen, D. J. Barlow, X. Kong, Y. Ma and R. C. Hider, Dalton Trans., 2012, 41, 10784 DOI: 10.1039/C2DT31254A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements