Issue 10, 2011

Macroscopic optical effects in low concentration ferronematics

Abstract

We present a detailed experimental and theoretical study of the optical response of suspensions of ferromagnetic nanoparticles (“ferroparticles”) in nematic liquid crystals (“ferronematics”), concentrating on the magnetic field-induced Frederiks transition. Even extremely low ferroparticle concentrations (at a volume fraction between 2 × 10−5 and 2 × 10−4), induce a significant additional ferronematic linear response at low magnetic field (<100 G) and a decrease in the effective magnetic Frederiks threshold. The experimental results demonstrate that our system has weak ferronematic behavior. The proposed theory takes into account the nematic diamagnetism and assumes that the effective magnetic susceptibility, induced by the nanoparticles, no longer dominates the response. The theory is in good agreement with the experimental data for the lowest concentration suspensions and predicts the main features of the more concentrated ones. The deviations observed in these cases hint at extra effects due to particle aggregation, which we have also observed directly in photographs.

Graphical abstract: Macroscopic optical effects in low concentration ferronematics

Article information

Article type
Paper
Submitted
13 Jan 2011
Accepted
09 Mar 2011
First published
29 Mar 2011

Soft Matter, 2011,7, 4742-4749

Macroscopic optical effects in low concentration ferronematics

N. Podoliak, O. Buchnev, O. Buluy, G. D'Alessandro, M. Kaczmarek, Y. Reznikov and T. J. Sluckin, Soft Matter, 2011, 7, 4742 DOI: 10.1039/C1SM05051F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements