Skip to main content
Log in

The centrality of PBGD expression levels on ALA-PDT efficacy

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Successful 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) is dependent on efficient porphyrin synthesis in the inflicted cancer tissue, which is regulated by several enzymes. Irradiation of the tumor excites the light-sensitive porphyrins and results in ROS production and cell death. In this study we investigated the effect of the expression levels of two main enzymes in heme biosynthesis, ALA dehydratase (ALAD) and porphobilinogen deaminase (PBGD), on the capacity of K562 cells to undergo cell death following ALA-PDT. We manipulated PBGD and ALAD expression levels by shRNAs and PBGD overexpressing plasmid. PBGD down-regulation induced an elevation in ALAD activity, while overexpression of PBGD reduced ALAD activity, indicating a novel regulation feedback of PBGD on ALAD activity. This feedback mechanism enabled partial PpIX synthesis under PBGD silencing, whereas ALAD silencing reduced PpIX production to a minimum. ALA-PDT efficacy was directly correlated to PpIX levels. Thus, only ALAD-silenced cells were not affected by ALA+ irradiation, while following PBGD silencing, the accumulated PpIX, though decreased, was sufficient for successful ALA-PDT. The alterations in ALAD activity level initiated by changes in PBGD expression indicates PBGD’s central role in heme synthesis. This enables efficient ALA-PDT, even when PBGD is not fully active. Conversely, ALAD loss resulted in reduced PpIX synthesis and consequently failure in ALA-PDT, due to the absence of compensation mechanism for ALAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Ajioka, J. D. Phillips and J. P. Kushner, Biosynthesis of heme in mammals, Biochim. Biophys. Acta, Mol. Cell Res., 2006, 1763, 723–36.

    Article  CAS  Google Scholar 

  2. P. Ponka, Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells, Blood, 1997, 89, 1–25.

    Article  CAS  Google Scholar 

  3. G. Berkovitch, D. Doron, A. Nudelman, Z. Malik and A. Rephaeli, Novel multifunctional acyloxyalkyl ester prodrugs of 5-aminolevulinic acid display improved anticancer activity independent and dependent on photoactivation, J. Med. Chem., 2008, 51, 7356–69.

    Article  CAS  Google Scholar 

  4. P. Hinnen et al., Biochemical basis of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation: a study in patients with (pre)malignant lesions of the oesophagus, Br. J. Cancer, 1998, 78, 679–82.

    Article  CAS  Google Scholar 

  5. A. Klein, P. Babilas, S. Karrer, M. Landthaler and R. M. Szeimies, Photodynamic therapy in dermatology-an update 2008, J. Dtsch. Dermatol. Ges., 2008, 6, 839–46.

    Article  Google Scholar 

  6. Q. Peng et al., 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges, Cancer, 1997, 79, 2282–308.

    Article  CAS  Google Scholar 

  7. L. Greenbaum, Y. Gozlan, D. Schwartz, D. J. Katcoff and Z. Malik, Nuclear distribution of porphobilinogen deaminase (PBGD) in glioma cells: a regulatory role in cancer transformation?, Br. J. Cancer, 2002, 86, 1006–11.

    Article  CAS  Google Scholar 

  8. T. Feuerstein, A. Schauder and Z. Malik, Silencing of ALA dehydratase affects ALA-photodynamic therapy efficacy in K562 erythroleukemic cells, Photochem. Photobiol. Sci., 2009, 8, 1461–66.

    Article  CAS  Google Scholar 

  9. S. Collaud, A. Juzeniene, J. Moan and N. Lange, On the selectivity of 5-aminolevulinic acid-induced protoporphyrin IX formation, Curr. Med. Chem.: Anti-Cancer Agents, 2004, 4, 301–16.

    CAS  PubMed  Google Scholar 

  10. Z. Malik and H. Lugaci, Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins, Br. J. Cancer, 1987, 56, 589–95.

    Article  CAS  Google Scholar 

  11. S. D. Ickowicz, Y. Gozlan, L. Greenbaum, T. Babushkina, D. J. Katcoff and Z. Malik, Differentiation-dependent photodynamic therapy regulated by porphobilinogen deaminase in B16 melanoma, Br. J. Cancer, 2004, 90, 1833–41.

    Article  Google Scholar 

  12. S. L. Gibson, D. J. Cupriks, J. J. Havens, M. L. Nguyen and R. Hilf, A regulatory role for porphobilinogen deaminase (PBGD) in delta-aminolaevulinic acid (delta-ALA)-induced photosensitization?, Br. J. Cancer, 1998, 77, 235–42.

    Article  CAS  Google Scholar 

  13. L. Leibovici et al., Activity of porphobilinogen deaminase in peripheral blood mononuclear cells of patients with metastatic cancer, Cancer, 1988, 62, 2297–300.

    Article  CAS  Google Scholar 

  14. R. Mamet, L. Leibovici, Y. Teitz and N. Schoenfeld, Accelerated heme synthesis and degradation in transformed fibroblasts, Biochem. Med. Metab. Biol., 1990, 44, 175–80.

    Article  CAS  Google Scholar 

  15. N. Schoenfeld, O. Epstein, M. Lahav, R. Mamet, M. Shaklai and A. Atsmon, The heme biosynthetic pathway in lymphocytes of patients with malignant lymphoproliferative disorders, Cancer Lett., 1988, 43, 43–48.

    Article  CAS  Google Scholar 

  16. R. Hilf, J. J. Havens and S. L. Gibson, Effect of delta-aminolevulinic acid on protoporphyrin IX accumulation in tumor cells transfected with plasmids containing porphobilinogen deaminase DNA, Photochem. Photobiol., 1999, 70, 334–40.

    CAS  PubMed  Google Scholar 

  17. U. A. Meyer, M. M. Schuurmans and R. L. Lindberg, Acute porphyrias: pathogenesis of neurological manifestations, Semin. Liver Dis., 2008, 18, 43–52.

    Article  Google Scholar 

  18. H. Puy, L. Gouya and J. C. Deybach, Porphyrias, Lancet, 2010, 375, 924–37.

    Article  CAS  Google Scholar 

  19. E. Buytaert, M. Dewaele and P. Agostinis, Molecular effectors of multiple cell death pathways initiated by photodynamic therapy, Biochim. Biophys. Acta, 2007, 1776, 86–107.

    CAS  PubMed  Google Scholar 

  20. N. Grunberg-Etkovitz, L. Greenbaum, B. Grinblat and Z. Malik, Proteasomal degradation regulates expression of porphobilinogen deaminase (PBGD) mutants of acute intermittent porphyria, Biochim. Biophys. Acta, 2006, 1762, 819–27.

    Article  Google Scholar 

  21. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, 72, 248–54.

    Article  CAS  Google Scholar 

  22. B. Grinblat, N. Pour and Z. Malik, Regulation of porphyrin synthesis and photodynamic therapy in heavy metal intoxication, J. Environ. Pathol. Toxicol. Oncol., 2006, 25, 145–58.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schauder, A., Feuerstein, T. & Malik, Z. The centrality of PBGD expression levels on ALA-PDT efficacy. Photochem Photobiol Sci 10, 1310–1317 (2011). https://doi.org/10.1039/c1pp05085k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05085k

Navigation