Issue 2, 2011

In situ study of the adsorption of humic acid on the surface of aluminium oxide by QCM-D reveals novel features

Abstract

Novel features of the adsorption of humic acid on the surface of aluminium oxide were revealed by means of an in situ study by quartz crystal microbalance with dissipation (QCM-D). The adsorption of humic acid on the surface of aluminium oxide shows a special case at pH 3 where the adsorption takes place in two steps. Each step has characteristic thickness, kinetics and viscoelasticity. While the first step shows low thickness, fast kinetics and almost no viscoelastic character, indicating a rigidly adsorbed humic acid monolayer, the second step is of much higher thickness, slower kinetics and with significant viscoelastic character, indicating a large diffuse layer with significant bulk contributions. In contrast, adsorption at pH 5 and 6.8 was found to be limited to a monolayer which is more rigid at pH 5 than at pH 6.8. Ellipsometry and X-ray photoelectron spectroscopy (XPS) were used to prove and quantify the adsorption in the dry state. The monolayer thickness measured by ellipsometry is close to the Sauerbrey thickness obtained by QCM-D. Adsorption takes place at a dilute concentration of 1 mg L−1, followed by saturation at a concentration of 10–20 mg L−1. XPS spectra of the carbon 1s peak indicated almost no desorption of the adsorbed humic acid layer after immersion in water for 48 hours, implying irreversible adsorption based on a strong binding between humic acid and aluminium oxide.

Graphical abstract: In situ study of the adsorption of humic acid on the surface of aluminium oxide by QCM-D reveals novel features

Article information

Article type
Paper
Submitted
08 Jul 2010
Accepted
05 Oct 2010
First published
01 Nov 2010

Soft Matter, 2011,7, 709-715

In situ study of the adsorption of humic acid on the surface of aluminium oxide by QCM-D reveals novel features

M. Eita, Soft Matter, 2011, 7, 709 DOI: 10.1039/C0SM00648C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements