Skip to main content

Advertisement

Log in

Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks

Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects, they could accelerate the rate of atmospheric CO2 increase and subsequent climate change beyond current predictions. The effects of predicted changes in climate and solar UV radiation on carbon cycling in terrestrial and aquatic ecosystems are expected to vary significantly between regions. The balance of positive and negative effects on terrestrial carbon cycling remains uncertain, but the interactions between UV radiation and climate change are likely to contribute to decreasing sink strength in many oceanic regions. Interactions between climate and solar UV radiation will affect cycling of elements other than carbon, and so will influence the concentration of greenhouse and ozone-depleting gases. For example, increases in oxygen-deficient regions of the ocean caused by climate change are projected to enhance the emissions of nitrous oxide, an important greenhouse and ozone-depleting gas. Future changes in UV-induced transformations of aquatic and terrestrial contaminants could have both beneficial and adverse effects. Taken in total, it is clear that the future changes in UV radiation coupled with human-caused global change will have large impacts on biogeochemical cycles at local, regional and global scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. R. G. Zepp, T. V. Callaghan and D. J. Erickson, Interactive effects of ozone depletion and climate change on biogeochemical cycles, Photochem. Photobiol. Sci., 2003, 2, 51–61.

    Article  CAS  PubMed  Google Scholar 

  2. R. G. Zepp, D. J. Erickson, III, N. D. Paul and B. Sulzberger, Interactive effects of solar UV radiation and climate change on biogochemical cycling, Photochem. Photobiol. Sci., 2007, 6, 286–700.

    Article  CAS  PubMed  Google Scholar 

  3. R. L. McKenzie, P. J. Aucamp, A. F. Bais, L. O. Björn, M. Ilyas and S. Madronich, Ozone depletion and climate change: impacts on UV radiation, Photochem. Photobiol. Sci., 2011, 10, DOI: 10.1039/c0pp90034f.

  4. C. L. Ballaré, M. M. Caldwell, S. D. Flint, S. A. Robinson and J. F. Bornman, Effects of solarUVradiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change, Photochem. Photobiol. Sci., 2011, 10, DOI: 10.1039/c0pp90035d.

  5. D.-P. Häder, E. W. Helbling, C. E. Williamson and R. C. Worrest, Effects on Aquatic Ecosystems and Interactions with Climate Change, Photochem. Photobiol. Sci., 2011, 10, DOI: 10.1039/c0pp90036b.

  6. P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz and R. V. Dorland, Changes in Atmospheric Constituents and in Radiative Forcing, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth AssessmentReport of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007, pp. 129–234.

    Google Scholar 

  7. A. R. Ravishankara, J. S. Daniel and R.W. Portmann, Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century, Science, 2009, 326, 123–125.

    Article  CAS  PubMed  Google Scholar 

  8. J. G. Canadell, C. Le Quere, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. A. Houghton and G. Marland, Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 18866–18870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. W. Knorr, Is the airborne fraction of anthropogenic CO2 emissions increasing?, Geophys. Res. Lett., 2009, 36, 5.

    Article  CAS  Google Scholar 

  10. C. Le Quere, M. R. Raupach, J. G. Canadell, G. Marland, L. Bopp, P. Ciais, T. J. Conway, S. C. Doney, R. A. Feely, P. Foster, P. Friedlingstein, K. Gurney, R. A. Houghton, J. I. House, C. Huntingford, P. E. Levy, M. R. Lomas, J. Majkut, N. Metzl, J. P. Ometto, G. P. Peters, I. C. Prentice, J. T. Randerson, S. W. Running, J. L. Sarmiento, U. Schuster, S. Sitch, T. Takahashi, N. Viovy, G. R. van der Werf and F. I. Woodward, Trends in the sources and sinks of carbon dioxide, Nat. Geosci., 2009, 2, 831–836.

    Article  CAS  Google Scholar 

  11. N. Gruber, M. Gloor, S. E. M. Fletcher, S. C. Doney, S. Dutkiewicz, M. J. Follows, M. Gerber, A. R. Jacobson, F. Joos, K. Lindsay, D. Menemenlis, A. Mouchet, S. A. Muller, J. L. Sarmiento and T. Takahashi, Oceanic sources, sinks, and transport of atmospheric CO2, Global Biogeochem. Cycles, 2009, 23, 21.

    Article  CAS  Google Scholar 

  12. S. E. M. Fletcher, N. Gruber, A. R. Jacobson, M. Gloor, S. C. Doney, S. Dutkiewicz, M. Gerber, M. Follows, F. Joos, K. Lindsay, D. Menemenlis, A. Mouchet, S. A. Muller and J. L. Sarmiento, Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport, Global Biogeochem. Cycles, 2007, 21, GB1010.

    Google Scholar 

  13. P. Quay, R. Sonnerup, J. Stutsman, J. Maurer, A. Kortzinger, X. A. Padin and C. Robinson, Anthropogenic CO2 accumulation rates in the North Atlantic Ocean from changes in the C13/C12 of dissolved inorganic carbon, Global Biogeochem. Cycles, 2007, 21, GB1009.

    Article  CAS  Google Scholar 

  14. S. L. Piao, P. Ciais, P. Friedlingstein, P. Peylin, M. Reichstein, S. Luyssaert, H. Margolis, J. Y. Fang, A. Barr, A. P. Chen, A. Grelle, D. Y. Hollinger, T. Laurila, A. Lindroth, A. D. Richardson and T. Vesala, Net carbon dioxide losses of northern ecosystems in response to autumn warming, Nature, 2008, 451, 49–U43.

    Article  CAS  PubMed  Google Scholar 

  15. P. Cox and C. Jones, Climate change - Illuminating the modern dance of climate and CO2, Science, 2008, 321, 1642–1644.

    Article  CAS  PubMed  Google Scholar 

  16. A. Lenton, F. Codron, L. Bopp, N. Metzl, P. Cadule, A. Tagliabue and J. Le Sommer, Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification, Geophys. Res. Lett., 2009, 36, 5.

    Article  CAS  Google Scholar 

  17. H. Thomas, A. E. F. Prowe, I. D. Lima, S. C. Doney, R. Wanninkhof, R. J. Greatbatch, U. Schuster and A. Corbiere, Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past 2 decades, Global Biogeochem. Cycles, 2008, 22, 13.

  18. H. Thomas, A. E. F. Prowe, S. van Heuven, Y. Bozec, H. J. W. de Baar, L. S. Schiettecatte, K. Suykens, M. Kone, A. V. Borges, I. D. Lima and S. C. Doney, Rapid decline of the CO2 buffering capacity in the North Sea and implications for the North Atlantic Ocean, Global Biogeochem. Cycles, 2007, 21, 13.

    Article  CAS  Google Scholar 

  19. H. D. Matthews, M. Eby, T. Ewen, P. Friedlingstein and B. J. Hawkins, What determines the magnitude of carbon cycle-climate feedbacks?, Global Biogeochem. Cycles, 2007, 21, GB2012.

    Article  CAS  Google Scholar 

  20. H. D. Matthews, N. P. Gillett, P. A. Stott and K. Zickfeld, The proportionality of global warming to cumulative carbon emissions, Nature, 2009, 459, 829–U823.

    Article  CAS  PubMed  Google Scholar 

  21. K. Zickfeld, M. Eby and A. J. Weaver, Carbon-cycle feedbacks of changes in the Atlantic meridional overturning circulation under future atmospheric CO2, Global Biogeochem. Cycles, 2008, 22, GB3024.

    Article  CAS  Google Scholar 

  22. A. R. Ganguly, K. Steinhaeuser, D. J. Erickson III, M. Branstetter, E. S. Parish, N. Singh, J. B. Drake and L. Buja, Higher trends but larger uncertainty and geographic variability in 21st century temperature and heat waves, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 15555–15559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. D. Baldocchi, Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems, Aust. J. Bot., 2008, 56, 1–26.

    Article  CAS  Google Scholar 

  24. M. M. Caldwell, J. F. Bornman, C. L. Ballare, S. D. Flint and Kulandaivelu, Terrestrial ecosystems, increased ultraviolet radiation, and interactions with other climate change factors, Photochem. Photobiol. Sci., 2007, 6, 252–266.

    Article  CAS  PubMed  Google Scholar 

  25. A. T. Austin and L. Vivanco, Plant litter decomposition in a semiarid ecosystem controlled by photodegradation, Nature, 2006, 442, 555–558.

    Article  CAS  PubMed  Google Scholar 

  26. L. A. Brandt, C. Bohnet and J. Y. King, Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems, J. Geophys. Res. Biogeosci., 2009, 114, 13.

    Google Scholar 

  27. H. A. L. Henry, K. Brizgys and C. B. Field, Litter decomposition in a california annual grassland: Interactions between photodegradation and litter layer thickness, Ecosystems, 2008, 11, 545–554.

    Article  CAS  Google Scholar 

  28. A. G. F. Fischlin, G. F. Midgley, J. T. Price, R. Leemans, B. Gopal, C. Turley, M. D. A. Rounsevell, O. P. Dube, J. Tarazona and A. A. Velichko, Ecosystems, their properties, goods, and services in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. v. d. Linden and C. E. Hanson, Cambridge University Press, Cambridge, UK, 2007, pp. 211–272.

    Google Scholar 

  29. M. Giese, Y. Z. Gao, Y. Zhao, Q. M. Pan, S. Lin, S. Peth and H. Brueck, Effects of grazing and rainfall variability on root and shoot decomposition in a semi-arid grassland, Appl. Soil Ecol., 2009, 41, 8–18.

    Article  Google Scholar 

  30. H. Ishikawa, T. Osono and H. Takeda, Effects of clear-cutting on decomposition processes in leaf litter and the nitrogen and lignin dynamics in a temperate secondary forest, J. Forest Res., 2007, 12, 247–254.

    Article  CAS  Google Scholar 

  31. H. L. Throop and S. R. Archer, Interrelationships among shrub encroachment, land management, and litter decomposition in a semidesert grassland, Ecol. Appl., 2007, 17, 1809–1823.

    Article  PubMed  Google Scholar 

  32. C. K. McCalley and J. P. Sparks, Abiotic Gas Formation Drives Nitrogen Loss from a Desert Ecosystem, Science, 2009, 326, 837–840.

    Article  CAS  PubMed  Google Scholar 

  33. F. S. Chapin, J. T. Randerson, A. D. McGuire, J. A. Foley and C. B. Field, Changing feedbacks in the climate-biosphere system, Front. Ecol. Environ., 2008, 6, 313–320.

    Article  Google Scholar 

  34. S. A. Cowling, C. D. Jones and P. M. Cox, Greening the terrestrial biosphere: simulated feedbacks on atmospheric heat and energy circulation, Clim. Dyn., 2008, 32, 287–299.

    Article  Google Scholar 

  35. P. M. Cox, P. P. Harris, C. Huntingford, R. A. Betts, M. Collins, C. D. Jones, T. E. Jupp, J. A. Marengo and C. A. Nobre, Increasing risk of Amazonian drought due to decreasing aerosol pollution, Nature, 2008, 453, 212–U217.

    Article  CAS  PubMed  Google Scholar 

  36. Y. Q. Luo, D. Gerten, G. Le Maire, W. J. Parton, E. S. Weng, X. H. Zhou, C. Keough, C. Beier, P. Ciais, W. Cramer, J. S. Dukes, B. Emmett, P. J. Hanson, A. Knapp, S. Linder, D. Nepstad and L. Rustad, Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones, Global Change Biol., 2008, 14, 1986–1999.

    Article  Google Scholar 

  37. A. Schmittner, A. Oschlies, H. D. Matthews and E. D. Galbraith, Future changes in climate, ocean circulation, ecosystems, and bio-geochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD, Global Biogeochem. Cycles, 2008, 22, GB1013.

    Article  CAS  Google Scholar 

  38. W. G. Sunda, Iron and the carbon pump, Science, 2010, 327, 654–655.

    Article  CAS  PubMed  Google Scholar 

  39. J. Beardall, C. Sobrino and S. Stojkovic, Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers, Photochem. Photobiol. Sci., 2009, 8, 1257–1265.

    Article  CAS  PubMed  Google Scholar 

  40. J. J. Fritz, P. J. Neale, R. F. Davis and J. A. Peloquin, Response of Antarctic phytoplankton to solar UVR exposure: inhibition and recovery of photosynthesis in coastal and pelagic assemblages, Mar. Ecol.: Prog. Ser., 2008, 365, 1–16.

    Article  CAS  Google Scholar 

  41. D.-P. Häder, H. D. Kumar, R. C. Smith and R. C. Worrest, Effects of solar UV radiation on aquatic ecosystems and interactions with climate change, Photochem. Photobiol. Sci., 2007, 6, 267–285.

    Article  PubMed  Google Scholar 

  42. E. Leu, S. Falk-Petersen and D. O. Hessen, Ultraviolet radiation negatively affects growth but not food quality of artic diatoms, Limnol. Oceanogr., 2007, 52, 787–797.

    Article  CAS  Google Scholar 

  43. J. A. Meador, A. J. Baldwin, P. Catala, W. H. Jeffrey, F. Joux, J. A. Moss, J. D. Pakulski, R. Stevens and D. L. Mitchell, Sunlight-induced DNA Damage in Marine Micro-organisms Collected Along a Latitudinal Gradient from 70 degrees N to 68 degrees S, Photochem. Photobiol., 2009, 85, 412–421.

    Article  CAS  PubMed  Google Scholar 

  44. C. Sobrino, M. L. Ward and P. J. Neale, Acclimation to elevated carbon dioxide and ultraviolet radiation in the diatom Thalassiosira pseudonana: Effects on growth, photosynthesis, and spectral sensitivity of photoinhibition, Limnol. Oceanogr., 2008, 53, 494–505.

    Article  CAS  Google Scholar 

  45. R. G. Zepp, G. C. Shank, E. Stabenau, K. W. Patterson, M. Cyterski, W. Fisher, E. Bartels and S. L. Anderson, Spatial and temporal variability of solar ultraviolet exposure of coral assemblages in the Florida Keys: Importance of colored dissolved organic matter, Limnol. Oceanogr., 2008, 53, 1909–1922.

    Article  CAS  Google Scholar 

  46. C. E. Williamson, H. J. De Lange and D. M. Leech, Do zooplankton contribute to an ultraviolet clear-water phase in lakes?, Limnol. Oceanogr., 2007, 52, 662–667.

    Article  CAS  Google Scholar 

  47. C. M. Swan, D. A. Siegel, N. B. Nelson, C. A. Carlson and E. Nasir, Biogeochemical and hydrographic controls on chromophoric dissolved organic matter distribution in the Pacific Ocean, Deep-Sea Res., Part I, 2009, 56, 2175–2192.

    Article  CAS  Google Scholar 

  48. Z. Chen, C. Hu, R. N. Conmy, F. Muller-Karger and P. Swarzenski, Colored dissolved organic matter in Tampa Bay, Florida, Mar. Chem., 2007, 104, 98–109.

    Article  CAS  Google Scholar 

  49. C. D. Clark, L. P. Litz and S. B. Grant, Salt marshes as a source of chromophoric dissolved organic matter (CDOM) to Southern California coastal waters, Limnol. Oceanogr., 2008, 53, 1923–1933.

    Article  CAS  Google Scholar 

  50. B. J. Dalzell, E. C. Minor and K. M. Mopper, Photodegradation of estuarine dissolved organic matter: a multi-method assessment of DOM transformation, Org. Geochem., 2009, 40, 243–257.

    Article  CAS  Google Scholar 

  51. E. J. D’Sa and S. F. DiMarco, Seasonal variability and controls on chromophoric dissolved organic matter in a large river-dominated coastal margin, Limnol. Oceanogr., 2009, 54, 2233–2242.

    Article  Google Scholar 

  52. J. E. Grebel, J. J. Pignatello, W. H. Song, W. J. Cooper and W. A. Mitch, Impact of halides on the photobleaching of dissolved organic matter, Mar. Chem., 2009, 115, 134–144.

    Article  CAS  Google Scholar 

  53. K. H. Hefner, J. M. Fisher and J. L. Ferry, A multifactor exploration of the photobleaching of Suwannee River dissolved organic matter across the freshwater/saltwater interface, Environ. Sci. Technol., 2006, 40, 3717–3722.

    Article  CAS  PubMed  Google Scholar 

  54. J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber and K. Mopper, Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter, Limnol. Oceanogr., 2008, 53, 955–969.

    Article  Google Scholar 

  55. E. C. Minor, B. J. Dalzell, A. Stubbins and K. Mopper, Evaluating the photoalteration of estuarine dissolved organic matter using direct temperature-resolved mass spectrometry and UV-visible spectroscopy, Aquat. Sci., 2007, 69, 440–455.

    Article  CAS  Google Scholar 

  56. E. C. Minor, J. Pothen, B. J. Dalzell, H. Abdulla and K. Mopper, Effects of salinity changes on the photodegradation and ultraviolet-visible absorbance of terrestrial dissolved organic matter, Limnol. Oceanogr., 2006, 51, 2181–2186.

    Article  CAS  Google Scholar 

  57. C. L. Osburn, L. Retamal and W. F. Vincent, Photoreactivity of chromophoric dissolved organic matter transported by the Mackenzie River to the Beaufort Sea, Mar. Chem., 2009, 115, 10–20.

    Article  CAS  Google Scholar 

  58. C. Piccini, D. Conde, J. Pernthaler and R. Sommaruga, Alteration of chromophoric dissolved organic matter by solar UV radiation causes rapid changes in bacterial community composition, Photochem. Photobiol. Sci., 2009, 8, 1321–1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. U. F. Rodriguez-Zuniga, D. Milori, W. T. L. Da Silva, L. Martin-Neto, L. C. Oliveira and J. C. Rocha, Changes in optical properties caused by UV-irradiation of aquatic humic substances from the amazon river basin: Seasonal variability evaluation, Environ. Sci. Technol., 2008, 42, 1948–1953.

    Article  CAS  PubMed  Google Scholar 

  60. G. C. Shank, K. Nelson and P. A. Montagna, Importance of CDOM distribution and photoreactivity in a shallow Texas estuary, Estuaries Coasts, 2009, 32, 661–677.

    Article  CAS  Google Scholar 

  61. A. V. Vähätalo and R. G. Wetzel, Long-term photochemical and microbial decomposition of wetland-derived dissolved organic matter with alteration of C13:C12 mass ratio, Limnol. Oceanogr., 2008, 53, 1387–1392.

    Article  Google Scholar 

  62. Y. L. Zhang, M. L. Liu, B. Q. Qin and S. Feng, Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation, Hydrobiologia, 2009, 627, 159–168.

    Article  CAS  Google Scholar 

  63. N. B. Nelson, D. A. Siegel, C. A. Carlson and C. M. Swan, Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter, Geophys. Res. Lett., 2010, 37, L03610.

    Article  CAS  Google Scholar 

  64. M. J. Behrenfeld, R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier and E. S. Boss, Climate-driven trends in contemporary ocean productivity, Nature, 2006, 444, 752–755.

    Article  CAS  PubMed  Google Scholar 

  65. M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima and N. Mahowald, Satellite-detected fluorescence reveals global physiology of ocean phytoplankton, Biogeosciences, 2009, 6, 779–794.

    Article  Google Scholar 

  66. D. G. Boyce, M. R. Lewis and B. Worm, Global phytoplankton decline over the past century, Nature, 2010, 466, 591–596.

    Article  CAS  PubMed  Google Scholar 

  67. W. K. W. Li and W. G. Harrison, Propagation of an atmospheric climate signal to phytoplankton in a small marine basin, Limnol. Oceanogr., 2008, 53, 1734–1745.

    Article  Google Scholar 

  68. P. G. Brewer and E. T. Peltzer, Limits to marine life, Science, 2009, 324, 347–348.

    Article  CAS  PubMed  Google Scholar 

  69. A. T. Banaszak and M. P. Lesser, Effects of solar ultraviolet radiation on coral reef organisms, Photochem. Photobiol. Sci., 2009, 8, 1276–1294.

    Article  CAS  PubMed  Google Scholar 

  70. X. A. G. Moran, M. Sebastian, C. Pedros-Alio and M. Estrada, Response of Southern Ocean phytoplankton and bacterioplankton production to short-term experimental warming, Limnol. Oceanogr., 2006, 51, 1791–1800.

    Article  CAS  Google Scholar 

  71. N. R. Bates and A. J. Peters, The contribution of atmospheric acid deposition to ocean acidification in the subtropical North Atlantic Ocean, Mar. Chem., 2007, 107, 547–558.

    Article  CAS  Google Scholar 

  72. R. E. Zeebe, J. C. Zachos, K. Caldeira and T. Tyrrell, Oceans - Carbon emissions and acidification, Science, 2008, 321, 51–52.

    Article  CAS  PubMed  Google Scholar 

  73. G. De’ath, J. M. Lough and K. E. Fabricius, Declining coral calcification on the Great Barrier Reef, Science, 2009, 323, 116–119.

    Article  PubMed  CAS  Google Scholar 

  74. V. J. Fabry, B. A. Seibel, R. A. Feely and J. C. Orr, Impacts of ocean acidification on marine fauna and ecosystem processes, ICES J. Mar. Sci., 2008, 65, 414–432.

    Article  CAS  Google Scholar 

  75. R. A. Feely, C. L. Sabine, J. M. Hernandez-Ayon, D. Ianson and B. Hales, Evidence for upwelling of corrosive “acidified” water onto the continental shelf, Science, 2008, 320, 1490–1492.

    Article  CAS  PubMed  Google Scholar 

  76. K. S. Gao, Z. X. Ruan, V. E. Villafane, J. P. Gattuso and E. W. Helbling, Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi, Limnol. Oceanogr., 2009, 54, 1855–1862.

    Article  CAS  Google Scholar 

  77. J. M. Hall-Spencer, R. Rodolfo-Metalpa, S. Martin, E. Ransome, M. Fine, S. M. Turner, S. J. Rowley, D. Tedesco and M. C. Buia, Volcanic carbon dioxide vents show ecosystem effects of ocean acidification, Nature, 2008, 454, 96–99.

    Article  CAS  PubMed  Google Scholar 

  78. O. Hoegh-Guldberg, P. J. Mumby, A. J. Hooten, R. S. Steneck, P. Greenfield, E. Gomez, C. D. Harvell, P. F. Sale, A. J. Edwards, K. Caldeira, N. Knowlton, C. M. Eakin, R. Iglesias-Prieto, N. Muthiga, R. H. Bradbury, A. Dubi and M. E. Hatziolos, Coral reefs under rapid climate change and ocean acidification, Science, 2007, 318, 1737–1742.

    Article  CAS  PubMed  Google Scholar 

  79. K. R. N. Anthony and A. P. Kerswell, Coral mortality following extreme low tides and high solar radiation, Mar. Biol., 2007, 151, 1623–1631.

    Article  Google Scholar 

  80. K. E. Carpenter, M. Abrar, G. Aeby, R. B. Aronson, S. Banks, A. Bruckner, A. Chiriboga, J. Cortes, J. C. Delbeek, L. DeVantier, G. J. Edgar, A. J. Edwards, D. Fenner, H. M. Guzman, B. W. Hoeksema, G. Hodgson, O. Johan, W. Y. Licuanan, S. R. Livingstone, E. R. Lovell, J. A. Moore, D. O. Obura, D. Ochavillo, B. A. Polidoro, W. F. Precht, M. C. Quibilan, C. Reboton, Z. T. Richards, A. D. Rogers, J. Sanciangco, A. Sheppard, C. Sheppard, J. Smith, S. Stuart, E. Turak, J. E. N. Veron, C. Wallace, E. Weil and E. Wood, One-third of reef-building corals face elevated extinction risk from climate change and local impacts,, Science, 2008, 321, 560–563.

    Article  CAS  PubMed  Google Scholar 

  81. A. Rodriguez-Roman, X. Hernandez-Pech, P. E. Thome, S. Enriquez and R. Iglesias-Prieto, Photosynthesis and light utilization in the Caribbean coral Montastraea faveolata recovering from a bleaching event, Limnol. Oceanogr., 2006, 51, 2702–2710.

    Article  Google Scholar 

  82. C. Ferrier-Pages, C. Richard, D. Forcioli, D. Allemand, M. Pichon and J. M. Shick, Effects of temperature and UV radiation increases on the photosynthetic efficiency in four scleractinian coral species, Biol. Bull., 2007, 213, 76–87.

    Article  PubMed  Google Scholar 

  83. S. C. Doney, W. M. Balch, V. J. Fabry and R. A. Feely, Ocean acidification: A critical emerging problem for the ocean sciences, Oceanography, 2009, 22, 16.

    Article  Google Scholar 

  84. S. C. Doney, V. J. Fabry, R. A. Feely and J. A. Kleypas, Ocean acidification: The other CO2 problem, Annu. Rev. Mar. Sci., 2009, 1, 169–192.

    Article  Google Scholar 

  85. M. Steinacher, F. Joos, T. L. Frolicher, G. K. Plattner and S. C. Doney, Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model, Biogeosciences, 2009, 6, 515–533.

    Article  CAS  Google Scholar 

  86. D. L. Shi, Y. Xu, B. M. Hopkinson and F. M. M. Morel, Effect of ocean acidification on iron availability to marine phytoplankton, Science, 2010, 327, 676–679.

    Article  CAS  PubMed  Google Scholar 

  87. N. S. Lovenduski, N. Gruber and S. C. Doney, Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink, Global Biogeochem. Cycles, 2008, 22, 9.

    Article  CAS  Google Scholar 

  88. J. R. Toggweiler, Shifting westerlies, Science, 2009, 323, 1434–1435.

    Article  CAS  PubMed  Google Scholar 

  89. R. P. Allan and B. J. Soden, Atmospheric warming and the amplification of precipitation extremes, Science, 2008, 321, 1481–1484.

    Article  CAS  PubMed  Google Scholar 

  90. A. Agren, M. Jansson, H. Ivarsson, K. Bishop and J. Seibert, Seasonal and runoff-related changes in total organic carbon concentrations in the River Ore, Northern Sweden, Aquat. Sci., 2007, 70, 21–29.

    Article  CAS  Google Scholar 

  91. A. Baker, L. Bolton, M. Newson and R. G. M. Spencer, Spectropho-tometric properties of surface water dissolved organic matter in an afforested upland peat catchment, Hydrol. Processes, 2008, 22, 2325–2336.

    Article  CAS  Google Scholar 

  92. M. Gonsior, B. M. Peake, W. T. Cooper, D. Podgorski, J. D’Andrilli and W. J. Cooper, Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry, Environ. Sci. Technol., 2009, 43, 698–703.

    Article  CAS  PubMed  Google Scholar 

  93. P. J. Hernes, R. G. M. Spencer, R. Y. Dyda, B. A. Pellerin, P. A. M. Bachand and B. A. Bergamaschi, The role of hydrologic regimes on dissolved organic carbon composition in an agricultural watershed, Geochim. Cosmochim. Acta, 2008, 72, 5266–5277.

    Article  CAS  Google Scholar 

  94. A. Lepisto, P. Kortelainen and T. Mattsson, Increased organic C and N leaching in a northern boreal river basin in Finland, Global Biogeochem. Cycles, 2008, 22, GB3029.

    Article  CAS  Google Scholar 

  95. B. E. van Dongen, Z. Zencak and Ö. Gustafsson, Differential transport and degradation of bulk organic carbon and specific terrestrial biomarkers in the surface waters of a sub-arctic brackish bay mixing zone, Mar. Chem., 2008, 112, 203–314.

    Article  CAS  Google Scholar 

  96. T. N. Wiegner, R. L. Tubal and R. A. MacKenzie, Bioavailability and export of dissolved organic matter from a tropical river during base-and -stormflow conditions, Limnol. Oceanogr., 2009, 54, 1233–1242.

    Article  CAS  Google Scholar 

  97. P. Kowalczuk, M. J. Durako, H. Young, A. E. Kahn, W. J. Cooper and M. Gonsior, Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Interannual variability, Mar. Chem., 2009, 113, 182–196.

    Article  CAS  Google Scholar 

  98. R. G. M. Spencer, G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl and P. J. Hernes, Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 2009, 36, L06401.

    Article  CAS  Google Scholar 

  99. J. E. Vonk, B. E. van Dongen and Ö. Gustafsson, Lipid biomarker investigation of the origin and diagenetic state of sub-arctic terrestrial organic matter presently exported into the northern Bothnian Bay, Mar. Chem., 2008, 112, 1–10.

    Article  CAS  Google Scholar 

  100. E. J. Biers, R. G. Zepp and M. A. Moran, The role of nitrogen in chromophoric and fluorescent dissolved organic matter formation, Mar. Chem., 2007, 103, 46–60.

    Article  CAS  Google Scholar 

  101. M. Gonsior, B. Peake, W. Cooper, R. Jaffe, H. Young, A. Kahn and P. Kowalczuk, Spectral characterization of chromophoric dissolved organic matter (CDOM) in a fjord (Doubtful Sound, New Zealand), Aquat. Sci., 2008, 70, 397–409.

    Article  CAS  Google Scholar 

  102. K. E. Judd, B. C. Crump and G. W. Kling, Bacterial responses in activity and community composition to photo-oxidation of dissolved organic matter from soil and surface waters, Aquat. Sci., 2007, 69, 96–107.

    Article  CAS  Google Scholar 

  103. C. L. Osburn, D. W. O’Sullivan and T. J. Boyd, Increases in the longwave photobleaching of chromophoric dissolved organic matter in coastal waters, Limnol. Oceanogr., 2009, 54, 145–159.

    Article  Google Scholar 

  104. A. Stubbins, V. Hubbard, G. Uher, C. S. Law, R. C. Upstill-Goddard, G. R. Aiken and K. Mopper, Relating carbon monoxide photoproduction to dissolved organic matter functionality, Environ. Sci. Technol., 2008, 42, 3271–3276.

    Article  CAS  PubMed  Google Scholar 

  105. B. Sulzberger and E. Durisch-Kaiser, Chemical characterization of dissolved organic matter (DOM): A prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailabil-ity, Aquat. Sci., 2009, 71, 104–126.

    Article  CAS  Google Scholar 

  106. M. Tzortziou, P. J. Neale, C. L. Osburn, J. P. Megonigal, N. Maie and R. Jaffe, Tidal marshes as a source of optically and chemically distinctive colored dissolved organic matter in the Chesapeake Bay, Limnol. Oceanogr., 2008, 53, 148–159.

    Article  CAS  Google Scholar 

  107. D. Vione, V. Lauri, C. Minero, V. Maurino, M. Malandrino, M. E. Carlotti, R. I. Olariu and C. Arsene, Photostability and photolability of dissolved organic matter upon irradiation of natural water samples under simulated sunlight, Aquat. Sci., 2009, 71, 34–45.

    Article  CAS  Google Scholar 

  108. S. Bélanger, H. X. Xie, N. Krotkov, P. Larouche, W. F. Vincent and M. Babin, Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change, Global Biogeochem. Cycles, 2006, 20, GB4005.

    Article  CAS  Google Scholar 

  109. L. M. Mayer, L. L. Schick, T. S. Bianchi and L. A. Wysocki, Photochemical changes in chemical markers of sedimentary organic matter source and age, Mar. Chem., 2009, 113, 123–128.

    Article  CAS  Google Scholar 

  110. H. X. Xie and O. C. Zafiriou, Evidence for significant photochemical production of carbon monoxide by particles in coastal and olig-otrophic marine waters, Geophys. Res. Lett., 2009, 36, 5.

    Article  Google Scholar 

  111. O. C. Zafiriou, H. X. Xie, N. B. Nelson, R. G. Najjar and W. Wang, Diel carbon monoxide cycling in the upper Sargasso Sea near Bermuda at the onset of spring and in midsummer, Limnol. Oceanogr., 2008, 53, 835–850.

    Article  CAS  Google Scholar 

  112. L. M. Mayer, L. L. Schick, K. R. Hardy and M. L. Estapa, Photodissolution and other photochemical changes upon irradiation of algal detritus, Limnol. Oceanogr., 2009, 54, 1688–1698.

    Article  CAS  Google Scholar 

  113. J. A. Riggsbee, C. H. Orr, D. M. Leech, M. W. Doyle and R. G. Wetzel, Suspended sediments in river ecosystems: Photochemical sources of dissolved organic carbon, dissolved organic nitrogen, and adsorptive removal of dissolved iron, J. Geophys. Res., 2008, 113, 12.

    Google Scholar 

  114. M. Davey, G. A. Tarran, M. M. Mills, C. Ridame, R. J. Geider and J. LaRoche, Nutrient limitation of picophytoplankton photosynthesis and growth in the tropical North Atlantic, Limnol. Oceanogr., 2008, 53, 1722–1733.

    Article  CAS  Google Scholar 

  115. A. Yool, A. P. Martin, C. Fernandez and D. R. Clark, The significance of nitrification for oceanic new production, Nature, 2007, 447, 999–1002.

    Article  CAS  PubMed  Google Scholar 

  116. T. H. DeLuca, M. C. Nilsson and O. Zackrisson, Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden, Oecologia, 2002, 133, 206–214.

    Article  CAS  PubMed  Google Scholar 

  117. T. H. DeLuca, O. Zackrisson, M. J. Gundale and M. C. Nilsson, Ecosystem feedbacks and nitrogen fixation in boreal forests, Science, 2008, 320, 1181–1181.

    Article  CAS  PubMed  Google Scholar 

  118. J. N. Galloway, A. R. Townsend, J. W. Erisman, M. Bekunda, Z. C. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger and M. A. Sutton, Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions, Science, 2008, 320, 889–892.

    Article  CAS  PubMed  Google Scholar 

  119. R. A. Duce, J. LaRoche, K. Altieri, K. R. Arrigo, A. R. Baker, D. G. Capone, S. Cornell, F. Dentener, J. Galloway, R. S. Ganeshram, R. J. Geider, T. Jickells, M. M. Kuypers, R. Langlois, P. S. Liss, S. M. Liu, J. J. Middelburg, C. M. Moore, S. Nickovic, A. Oschlies, T. Pedersen, J. Prospero, R. Schlitzer, S. Seitzinger, L. L. Sorensen, M. Uematsu, O. Ulloa, M. Voss, B. Ward and L. Zamora, Impacts of atmospheric anthropogenic nitrogen on the open ocean, Science, 2008, 320, 893–897.

    Article  CAS  PubMed  Google Scholar 

  120. A. Davies, A. E. S. Kemp and J. Pike, Late Cretaceous seasonal ocean variability from the Arctic, Nature, 2009, 460, 254–U118.

    Article  CAS  PubMed  Google Scholar 

  121. C. Deutsch, J. L. Sarmiento, D. M. Sigman, N. Gruber and J. P. Dunne, Spatial coupling of nitrogen inputs and losses in the ocean, Nature, 2007, 445, 163–167.

    Article  CAS  PubMed  Google Scholar 

  122. J. K. Moore and S. C. Doney, Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation, Global Biogeochem. Cycles, 2007, 21, GB2001.

    Article  CAS  Google Scholar 

  123. R. J. Kieber, N. E. Parler, S. A. Skrabal and J. D. Willey, Speciation and photochemistry of mercury in rainwater, J. Atmos. Chem., 2008, 60, 153–168.

    Article  CAS  Google Scholar 

  124. D. J. Beerling, C. N. Hewitt, J. A. Pyle and J. A. Raven, Critical issues in trace gas biogeochemistry and global change, Philos. Trans. R. Soc. London, Ser. A, 2007, 365, 1629–1642.

    CAS  Google Scholar 

  125. J. D. Willey, R. J. Kieber, P. J. Seaton and C. Miller, Rainwater as a source of Fe(II)-stabilizing ligands to seawater, Limnol. Oceanogr., 2008, 53, 1678–1684.

    Article  CAS  Google Scholar 

  126. F. M. M. Morel, A. B. Kustka and Y. Shaked, The role of unchelated Fe in the iron nutrition of phytoplankton, Limnol. Oceanogr., 2008, 53, 400–404.

    Article  CAS  Google Scholar 

  127. P. Borer, B. Sulzberger, S. J. Hug, S. M. Kraemer and R. Kretzschmar, Photoreductive Dissolution of Iron(III) (Hydr)oxides in the Absence and Presence of Organic ligands: Experimental Studies and Kinetic Modeling, Environ. Sci. Technol., 2009, 43, 1864–1870.

    Article  CAS  PubMed  Google Scholar 

  128. M. Fujii, A. L. Rose, T. D. Waite and T. Omura, Superoxide-mediated dissolution of amorphous ferric oxyhydroxide in seawater, Environ. Sci. Technol., 2006, 40, 880–887.

    Article  CAS  PubMed  Google Scholar 

  129. K. Barbeau, Photochemistry of organic iron(III) complexing ligands in oceanic systems, Photochem. Photobiol., 2006, 82, 1505–1516.

    Article  CAS  PubMed  Google Scholar 

  130. S. M. Fan, Photochemical and biochemical controls on reactive oxygen and iron speciation in the pelagic surface ocean, Mar. Chem., 2008, 109, 152–164.

    Article  CAS  Google Scholar 

  131. N. Kelton, L. A. Molot and P. J. Dillon, Effect of ultraviolet and visible radiation on iron lability in boreal and artificial waters, Aquat. Sci., 2007, 69, 86–95.

    Article  CAS  Google Scholar 

  132. L. A. Brandt, J. Y. King and D. G. Milchunas, Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem, Global Change Biol., 2007, 13, 2193–2205.

    Article  Google Scholar 

  133. W. K. Smith, W. Gao, H. Steltzer, M. D. Wallenstein and R. Tree, Moisture availability influences the effect of ultraviolet-B radiation on leaf litter decomposition, Global Change Biol., 2010, 16, 484–495.

    Article  Google Scholar 

  134. L. Brandt, J. King, S. Hobbie, D. Milchunas and R. Sinsabaugh, The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient, Ecosystems, 2010, 13, 765–781.

    Article  CAS  Google Scholar 

  135. W. Parton, W. L. Silver, I. C. Burke, L. Grassens, M. E. Harmon, W. S. Currie, J. Y. King, E. C. Adair, L. A. Brandt, S. C. Hart and B. Fasth, Global-scale similarities in nitrogen release patterns during long-term decomposition, Sci. Technol., 2007, 315, 361–364.

    CAS  Google Scholar 

  136. A. T. Austin and C. L. Ballaré, Dual role of lignin in plant litter decomposition in terrestrial ecosystems, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 4618–4622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. A. V. Vähätalo and M. Jarvinen, Photochemically produced bioavail-able nitrogen from biologically recalcitrant dissolved organic matter stimulates production of a nitrogen-limited microbial food web in the Baltic Sea, Limnol. Oceanogr., 2007, 52, 132–143.

    Article  Google Scholar 

  138. L. Loulergue, A. Schilt, R. Spahni, V. Masson-Delmotte, T. Blunier, B. Lemieux, J. M. Barnola, D. Raynaud, T. F. Stocker and J. Chappellaz, Orbital and millennial-scale features of atmospheric CH4 over the past 800, 000 years, Nature, 2008, 453, 383–386.

    Article  CAS  PubMed  Google Scholar 

  139. P. Bergamaschi, C. Frankenberg, J. F. Meirink, M. Krol, F. Dentener, T. Wagner, U. Platt, J. O. Kaplan, S. Korner, M. Heimann, E. J. Dlugokencky and A. Goede, Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations, J. Geophys. Res., 2007, 112, D02304.

    Google Scholar 

  140. J. B. do Carmo, M. Keller, J. D. Dias, P. B. de Camargo and P. Crill, A source of methane from upland forests in the Brazilian Amazon, Geophys. Res. Lett., 2006, 33, L04809.

    Article  CAS  Google Scholar 

  141. J. B. Miller, L. V. Gatti, M. T. S. d’Amelio, A. M. Crotwell, E. J. Dlugokencky, P. Bakwin, P. Artaxo and P. P. Tans, Airborne measurements indicate large methane emissions from the eastern Amazon basin, Geophys. Res. Lett., 2007, 34, L10809.

    Article  CAS  Google Scholar 

  142. F. Keppler, J. T. G. Hamilton, M. Brass and T. Rockmann, Methane emissions from terrestrial plants under aerobic conditions, Nature, 2006, 439, 187–191.

    Article  CAS  PubMed  Google Scholar 

  143. R. Niemi, P. J. Martikainen, J. Silvola, A. Wulff, S. Turtola and T. Holopainen, Elevated UV-B radiation alters fluxes of methane and carbon dioxide in peatland microcosms, Global Change Biol., 2002, 8, 361–371.

    Article  Google Scholar 

  144. S. Feil, Plants surprise as methane producers, Chem. Unserer Zeit, 2006, 40, 158–158.

    Article  Google Scholar 

  145. M. Hopkin, Missing gas saps plant theory, Nature, 2007, 447, 11–11.

    Article  CAS  PubMed  Google Scholar 

  146. S. Houweling, T. Rockmann, I. Aben, F. Keppler, M. Krol, J. F. Meirink, E. J. Dlugokencky and C. Frankenberg, Atmospheric constraints on global emissions of methane from plants, Geophys. Res. Lett., 2006, 33, L15821.

    Article  CAS  Google Scholar 

  147. D. F. Ferretti, J. B. Miller, J. W. C. White, K. R. Lassey, D. C. Lowe and D. M. Etheridge, Stable isotopes provide revised global limits of aerobic methane emissions from plants, Atmos. Chem. Phys., 2007, 7, 237–241.

    Article  CAS  Google Scholar 

  148. M. U. F. Kirschbaum, D. Bruhn, D. M. Etheridge, J. R. Evans, G. D. Farquhar, R. M. Gifford, K. I. Paul and A. J. Winters, A comment on the quantitative significance of aerobic methane release by plants, Funct. Plant Biol., 2006, 33, 521–530.

    Article  CAS  PubMed  Google Scholar 

  149. E. Sanhueza, Methane soil-vegetation-atmosphere fluxes in tropical ecosystems, Interciencia, 2007, 32, 30–34.

    Google Scholar 

  150. V. A. Sharpatyi, On the mechanism of methane emission by terrestrial plants, Oxid. Commun., 2007, 30, 48–50.

    CAS  Google Scholar 

  151. T. A. Dueck, R. de Visser, H. Poorter, S. Persijn, A. Gorissen, W. de Visser, A. Schapendonk, J. Verhagen, J. Snel, F. J. M. Harren, A. K. Y. Ngai, F. Verstappen, H. Bouwmeester, L. Voesenek and A. von der Werf, No evidence for substantial aerobic methane emission by terrestrial plants: a C13-labelling approach, New Phytol., 2007, 175, 29–35.

    Article  CAS  PubMed  Google Scholar 

  152. F. Keppler, J. T. G. Hamilton, W. C. McRoberts, I. Vigano, M. Brass and T. Rockmann, Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies, New Phytol., 2008, 178, 808–814.

    Article  CAS  PubMed  Google Scholar 

  153. D. J. Messenger, A. R. McLeod and S. C. Fry, The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin, Plant, Cell Environ., 2009, 32, 1–9.

    Article  CAS  Google Scholar 

  154. J. M. Melillo, J. M. Reilly, D. W. Kicklighter, A. C. Gurgel, T. W. Cronin, S. Paltsev, B. S. Felzer, X. D. Wang, A. P. Sokolov and C. A. Schlosser, Indirect Emissions from Biofuels: How Important?, Science, 2009, 326, 1397–1399.

    Article  CAS  PubMed  Google Scholar 

  155. D. R. Bowling, J. B. Miller, M. E. Rhodes, S. P. Burns, R. K. Monson and D. Baer, Soil, plant, and transport influences on methane in a subalpine forest under high ultraviolet irradiance, Biogeosciences, 2009, 6, 1311–1324.

    Article  CAS  Google Scholar 

  156. G. M. Cao, X. L. Xu, R. J. Long, Q. L. Wang, C. T. Wang, Y. G. Du and X. Q. Zhao, Methane emissions by alpine plant communities in the Qinghai-Tibet Plateau, Biol. Lett., 2008, 4, 681–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. R. E. R. Nisbet, R. Fisher, R. H. Nimmo, D. S. Bendall, P. M. Crill, A. V. Gallego-Sala, E. R. C. Hornibrook, E. Lopez-Juez, D. Lowry, P. B. R. Nisbet, E. F. Shuckburgh, S. Sriskantharajah, C. J. Howe and E. G. Nisbet, Emission of methane from plants, Proc. R. Soc. London, Ser. B, 2009, 276, 1347–1354.

    CAS  Google Scholar 

  158. A. A. Bloom, J. Lee-Taylor, S. Madronich, D. J. Messenger, P. I. Palmer, D. S. Reay and A. R. McLeod, Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage, New Phytol., 2010, 187, 417–425.

    Article  CAS  PubMed  Google Scholar 

  159. A. R. McLeod, S. C. Fry, G. J. Loake, D. J. Messenger, D. S. Reay, K. A. Smith and B. W. Yun, Ultraviolet radiation drives methane emissions from terrestrial plant pectins, New Phytol., 2008, 180, 124–132.

    Article  CAS  PubMed  Google Scholar 

  160. X. Tang, S. R. Wilson, K. R. Solomon, M. Shao and S. Madoronich, Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate, Photochem. Photobiol. Sci., 2011, 10, DOI: 10.1039/c0pp90039g.

  161. D. T. Shindell, G. Faluvegi, D. M. Koch, G. A. Schmidt, N. Unger and S. E. Bauer, Improved attribution of climate forcing to emissions, Science, 2009, 326, 716–718.

    Article  CAS  PubMed  Google Scholar 

  162. V. Gros, I. Peeken, K. Bluhm, E. Zollner, R. Sarda-Esteve and B. Bonsang, Carbon monoxide emissions by phytoplankton: evi dence from laboratory experiments, Environ. Chem., 2009, 6, 369–379.

    Article  CAS  Google Scholar 

  163. M. A. Moran and W. L. Miller, Resourceful heterotrophs make the most of light in the coastal ocean, Nat. Rev. Microbiol., 2007, 5, 792–800.

    Article  CAS  PubMed  Google Scholar 

  164. A. Stubbins, G. Uher, C. S. Law, K. Mopper, C. Robinson and R. C. Upstill-Goddard, Open-ocean carbon monoxide photoproduction, Deep-Sea Res., Part II, 2006, 53, 1695–1705.

    Article  Google Scholar 

  165. A. Stubbins, G. Uhera, V. Kitidis, C. S. Law, R. C. Upstill-Goddard and E. M. S. Woodward, The open-ocean source of atmospheric carbon monoxide, Deep-Sea Res., Part II, 2006, 53, 1685–1694.

    Article  Google Scholar 

  166. H. X. Xie, S. Belanger, S. Demers, W. F. Vincent and T. N. Papakyriakou, Photobiogeochemical cycling of carbon monoxide in the southeastern Beaufort Sea in spring and autumn, Limnol. Oceanogr., 2009, 54, 234–249.

    Article  CAS  Google Scholar 

  167. J. D. Tolli and C. D. Taylor, Biological CO oxidation in the Sargasso Sea and in Vineyard Sound, Massachusetts, Limnol. Oceanogr., 2005, 50, 1205–1212.

    Article  CAS  Google Scholar 

  168. P. Hari, M. Raivonen, T. Vesala, J. W. Munger, K. Pilegaard and M. Kulmala, Atmospheric science - Ultraviolet light and leaf emission of NOx, Nature, 2003, 422, 134–134.

    Article  CAS  PubMed  Google Scholar 

  169. J. P. Sparks, Ecological ramifications of the direct foliar uptake of nitrogen, Oecologia, 2008, 159, 1–13.

    Article  PubMed  Google Scholar 

  170. M. Raivonen, B. Bonn, M. J. Sanz, T. Vesala, M. Kulmala and P. Hari, UV-induced NOy emissions from Scots pine: Could they originate from photolysis of deposited HNO3, Atmos. Environ., 2006, 40, 6201–6213.

    Article  CAS  Google Scholar 

  171. M. Raivonen, T. Vesala, L. Pirjola, N. Altimir, P. Keronen, M. Kulmala and P. Hari, Compensation point of NOx exchange: Net result of NOx consumption and production, Agric. Forest Meteorol., 2009, 149, 1073–1081.

    Article  Google Scholar 

  172. D. J. Wuebbles, Nitrous oxide: No laughing matter, Science, 2009, 326, 56–57.

    Article  CAS  PubMed  Google Scholar 

  173. P. J. Crutzen, A. R. Mosier, K. A. Smith and W. Winiwarter, N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels, Atmos. Chem. Phys., 2008, 8, 389–395.

    Article  CAS  Google Scholar 

  174. L. A. Codispoti, Interesting times for marine N2O, Science, 2010, 327, 1339–1340.

    Article  CAS  PubMed  Google Scholar 

  175. S. Gebhardt, A. Colomb, R. Hofmann, J. Williams and J. Lelieveld, Halogenated organic species over the tropical South American rainforest, Atmos. Chem. Phys., 2008, 8, 3185–3197.

    Article  CAS  Google Scholar 

  176. J. Drewer, K. V. Heal, K. A. Smith and M. R. Heal, Methyl bromide emissions to the atmosphere from temperate woodland ecosystems, Global Change Biol., 2008, 14, 2539–2547.

    Article  Google Scholar 

  177. Y. A. Teh, O. Mazeas, A. R. Atwood, T. Abel and R. C. Rhew, Hydrologic regulation of gross methyl chloride and methyl bromide uptake from Alaskan Arctic tundra, Global Change Biol., 2009, 15, 330–345.

    Article  Google Scholar 

  178. J. Drewer, M. R. Heal, K. V. Heal and K. A. Smith, Temporal and spatial variation in methyl bromide flux from a salt marsh, Geophys. Res. Lett., 2006, 33, L16808.

    Article  Google Scholar 

  179. S. L. Manley, N. Y. Wang, M. L. Walser and R. J. Cicerone, Coastal salt marshes as global methyl halide sources from determinations of intrinsic production by marsh plants, Global Biogeochem. Cycles, 2006, 20, GB3015.

    Article  CAS  Google Scholar 

  180. R. C. Rhew, Y. A. Teh and T. Abel, Methyl halide and methane fluxes in the northern Alaskan coastal tundra, J. Geophys. Res., 2007, 112, G02009.

    Google Scholar 

  181. S. L. Manley, N. Y. Wang, M. L. Walser and R. J. Cicerone, Methyl halide emissions from greenhouse-grown mangroves, Geophys. Res. Lett., 2007, 34, L01806.

    Article  CAS  Google Scholar 

  182. J. X. Wang, R. J. Li, Y. Y. Guo, P. Qin and S. C. Sun, Removal of methyl chloroform in a coastal salt marsh of eastern China, Chemosphere, 2006, 65, 1371–1380.

    Article  CAS  PubMed  Google Scholar 

  183. J. X. Wang, R. J. Li, Y. Y. Guo, P. Qin and S. C. Sun, The flux of methyl chloride along an elevational gradient of a coastal salt marsh, Eastern China, Atmos. Environ., 2006, 40, 6592–6605.

    Article  CAS  Google Scholar 

  184. T. Ban-nai, Y. Muramatsu and S. Amachi, Rate of iodine volatilization and accumulation by filamentous fungi through laboratory cultures, Chemosphere, 2006, 65, 2216–2222.

    Article  CAS  PubMed  Google Scholar 

  185. A. Wishkerman, S. Gebhardt, C. W. McRoberts, J. T. G. Hamilton, J. Williams and F. Keppler, Abiotic methyl bromide formation from vegetation, and its strong dependence on temperature, Environ. Sci. Technol., 2008, 42, 6837–6842.

    Article  CAS  PubMed  Google Scholar 

  186. R. D. French-Monar, J. B. Jones, M. Ozores-Hampton and P. D. Roberts, Survival of inoculum of Phytophthora capsici in soil through time under different soil treatments, Plant Dis., 2007, 91, 593–598.

    Article  PubMed  Google Scholar 

  187. J. S. Gerik, Floriculture production with iodomethane, 1, 3-dichloropropene and chloropicrin as an alternative to methyl bromide, Phytopathology, 2007, 97, S40–S40.

    Google Scholar 

  188. F. Iriarte and E. Rosskopf, Spore viability bioassay, in vitro and greenhouse evaluation of six potential methyl bromide alternatives, Phytopathology, 2007, 97, S50–S50.

    Google Scholar 

  189. E. N. Rosskopf, J. S. Gerik, N. Kokalis-Burelle, G. T. Church and B. McSorley, Status of methyl bromide alternatives for ornamental crop production in Florida and California, Phytopathology, 2007, 97, S101–S101.

    Google Scholar 

  190. J. H. Butler, D. B. King, J. M. Lobert, S. A. Montzka, S. A. Yvon-Lewis, B. D. Hall, N. J. Warwick, D. J. Mondeel, M. Aydin and J. W. Elkins, Oceanic distributions and emissions of short-lived halocarbons, Global Biogeochem. Cycles, 2007, 21, GB1023.

    Google Scholar 

  191. L. J. Carpenter, D. J. Wevill, C. J. Palmer and J. Michels, Depth profiles of volatile iodine and bromine-containing halocarbons in coastal Antarctic waters, Mar. Chem., 2007, 103, 227–236.

    Article  CAS  Google Scholar 

  192. A. Karlsson, N. Auer, D. Schulz-Bull and K. Abrahamsson, Cyanobacterial blooms in the Baltic - A source of halocarbons, Mar. Chem., 2008, 110, 129–139.

    Article  CAS  Google Scholar 

  193. C. J. Palmer and C. J. Reason, Relationships of surface bromoform concentrations with mixed layer depth and salinity in the tropical oceans, Global Biogeochem. Cycles, 2009, 23, 10.

    Article  CAS  Google Scholar 

  194. M. B. Williams, M. Aydin, C. Tatum and E. S. Saltzman, A 2000 year atmospheric history of methyl chloride from a South Pole ice core: Evidence for climate controlled variability, Geophys. Res. Lett., 2007, 34, L07811.

    Google Scholar 

  195. R. M. Moore, A photochemical source of methyl chloride in saline waters, Environ. Sci. Technol., 2008, 42, 1933–1937.

    Article  CAS  PubMed  Google Scholar 

  196. I. Hense and B. Quack, Modelling the vertical distribution of bromoform in the upper water column of the tropical Atlantic Ocean, Biogeosciences, 2009, 6, 535–544.

    Article  CAS  Google Scholar 

  197. G. Myhre, Consistency between satellite-derived and modeled estimates of the direct aerosol effect, Science, 2009, 325, 187–190.

    Article  CAS  PubMed  Google Scholar 

  198. D. A. del Valle, D. J. Kieber, D. A. Toole, J. Bisgrove and R. P. Kiene, Dissolved DMSO production via biological and photochemical oxidation of dissolved DMS in the Ross Sea, Antarctica, Deep-Sea Res., Part I, 2009, 56, 166–177.

    Article  CAS  Google Scholar 

  199. W. G. Sunda and D. R. Hardison, Contrasting seasonal patterns in dimethylsulfide, dimethylsulfoniopropionate, and chlorophyll a in a shallow North Carolina estuary and the Sargasso Sea, Aquat. Microb. Ecol., 2008, 53, 281–294.

    Article  Google Scholar 

  200. Y. W. Watanabe, H. Yoshinari, A. Sakamoto, Y. Nakano, N. Kasamatsu, T. Midorikawa and T. Ono, Reconstruction of sea surface dimethylsulfide in the North Pacific during 1970 s to 2000s, Mar. Chem., 2007, 103, 347–358.

    Article  CAS  Google Scholar 

  201. A. J. Trevena and G. B. Jones, Dimethylsulfide and dimethylsulfonio-propionate in Antarctic sea ice and their release during sea ice melting, Mar. Chem., 2006, 98, 210–222.

    Article  CAS  Google Scholar 

  202. D. Slezak, K. R. P., D. A. Toole, S. R. and D. J. Kieber, Effects of solar radiation on the fate of dissolved DMSP and conversion to DMS in seawater, Aquat. Sci., 2007, 69, 377–393.

    Article  CAS  Google Scholar 

  203. W. G. Sunda, R. Hardison, R. P. Kiene, E. Bucciarelli and H. Harada, The effect of nitrogen limitation on cellular DMSP and DMS release in marine phytoplankton: Climate feedback implications, Aquat. Sci., 2007, 69, 341–351.

    Article  CAS  Google Scholar 

  204. C. A. Stedmon, S. Markager, L. Tranvik, L. Kronberg, T. Slatis and W. Martinsen, Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea, Mar. Chem., 2007, 104, 227–240.

    Article  CAS  Google Scholar 

  205. D. J. Kieber, D. A. Toole, J. J. Jankowski, R. P. Kiene, G. R. Westby, D. A. del Valle and D. Slezak, Chemical “light meters” for photochemical and photobiological studies, Aquat. Sci., 2007, 69, 360–376.

    Article  CAS  Google Scholar 

  206. T. F. Mentel, J. Wildt, A. Kiendler-Scharr, E. Kleist, R. Tillmann, M. Dal Maso, R. Fisseha, T. Hohaus, H. Spahn, R. Uerlings, R. Wegener, P. T. Griffiths, E. Dinar, Y. Rudich and A. Wahner, Photochemical production of aerosols from real plant emissions, Atmos. Chem. Phys., 2009, 9, 4387–4406.

    Article  CAS  Google Scholar 

  207. J. Laothawornkitkul, J. E. Taylor, N. D. Paul and C. N. Hewitt, Biogenic volatile organic compounds in the Earth system (Vol 183, pg 27, 2009), New Phytol., 2009, 184, 276–276.

    Article  CAS  Google Scholar 

  208. J. D. Blande, K. Turunen and J. K. Holopainen, Pine weevil feeding on Norway spruce bark has a stronger impact on needle VOC emissions than enhanced ultraviolet-B radiation, Environ. Pollut., 2009, 157, 174–180.

    Article  CAS  PubMed  Google Scholar 

  209. T. R. Winter and M. Rostas, Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense, Environ. Pollut., 2008, 155, 290–297.

    Article  CAS  PubMed  Google Scholar 

  210. P. Tiiva, R. Rinnan, P. Faubert, J. Rasanen, T. Holopainen, E. Kyro and J. K. Holopainen, Isoprene emission from a subarctic peatland under enhanced UV-B radiation, New Phytol., 2007, 176, 346–355.

    Article  CAS  PubMed  Google Scholar 

  211. S. N. Matsunaga, A. B. Guenther, M. J. Potosnak and E. C. Apel, Emission of sunscreen salicylic esters from desert vegetation and their contribution to aerosol formation, Atmos. Chem. Phys., 2008, 8, 7367–7371.

    Article  CAS  Google Scholar 

  212. E. M. Sunderland, D. P. Krabbenhoft, J. W. Moreau, S. A. Strode and W. M. Landing, Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models, Global Biogeochem. Cycles, 2009, 23, GB2010.

    Article  CAS  Google Scholar 

  213. R. A. Witherow and W. B. Lyons, Mercury deposition in a polar desert ecosystem, Environ. Sci. Technol., 2008, 42, 4710–4716.

    Article  CAS  PubMed  Google Scholar 

  214. A. P. Dastoor, D. Davignon, N. Theys, M. Van Roozendael, A. Steffen and P. A. Ariya, Modeling dynamic exchange of gaseous elemental mercury at polar sunrise, Environ. Sci. Technol., 2008, 42, 5183–5188.

    Article  CAS  PubMed  Google Scholar 

  215. L. S. Sherman, J. D. Blum, K. P. Johnson, G. J. Keeler, J. A. Barres and T. A. Douglas, Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight, Nat. Geosci., 2010, 3, 173–177.

    Article  CAS  Google Scholar 

  216. L. Fantozzi, R. Ferrara, F. P. Frontini and F. Dini, Factors influencing the daily behaviour of dissolved gaseous mercury concentration in the Mediterranean Sea, Mar. Chem., 2007, 107, 4–12.

    Article  CAS  Google Scholar 

  217. M. Monperrus, E. Tessier, D. Amouroux, A. Leynaert, P. Huonnic and O. F. X. Donard, Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea, Mar. Chem., 2007, 107, 49–63.

    Article  CAS  Google Scholar 

  218. N. J. O’Driscoll, L. Poissant, J. Canario, J. Ridal and D. R. S. Lean, Continuous analysis of dissolved gaseous mercury and mercury volatilization in the upper St. Lawrence River: Exploring temporal relationships and UV attenuation, Environ. Sci. Technol., 2007, 41, 5342–5348.

    Article  PubMed  CAS  Google Scholar 

  219. S. C. Peters, J. L. Wollenberg, D. P. Morris and J. A. Porter, Mercury emission to the atmosphere from experimental manipulation of DOC and UVR in mesoscale field chambers in a freshwater lake, Environ. Sci. Technol., 2007, 41, 7356–7362.

    Article  CAS  PubMed  Google Scholar 

  220. L. Whalin, E.-H. Kim and R. Mason, Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters, Mar. Chem., 2007, 107, 278–294.

    Article  CAS  Google Scholar 

  221. L. C. Chasar, B. C. Scudder, A. R. Stewart, A. H. Bell and G. R. Aiken, Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation, Environ. Sci. Technol., 2009, 43, 2733–2739.

    Article  CAS  PubMed  Google Scholar 

  222. A. C. Luengen and A. R. Flegal, Role of phytoplankton in mercury cycling in the San Francisco Bay estuary, Limnol. Oceanogr., 2009, 54, 23–40.

    Article  CAS  Google Scholar 

  223. J. A. Ortega-Garcia, K. Rodriguez, M. Martin, D. D. Velez, V. M. C. Sanchez-Alarcon, A. M. T. Cantero, C. G.-V. Galindo-Cascales, J. M., M. F. Sanchez-Sauco, M. Sanchez-Solis, B. Alfonso-Marsilla and F. Romero-Braquehais, Estimated intake levels of methylmercury in children, childbearing age and pregnant women in a Mediterranean region, Murcia, Spain, Eur. J. Pediatr., 2008, 168, 1075–1080.

    Article  PubMed  CAS  Google Scholar 

  224. P. M. Outridge, R. W. Macdonald, F. Wang, G. A. Stern and A. P. Dastoor, A mass balance inventory of mercury in the Arctic Ocean, Environ. Chem., 2008, 5, 89–111.

    Article  CAS  Google Scholar 

  225. M. L. Brooks, D. M. McKnight and W. H. Clements, Photochemical control of copper complexation by dissolved organic matter in Rocky Mountain streams, Colorado, Limnol. Oceanogr., 2007, 52, 766–779.

    Article  CAS  Google Scholar 

  226. J. H. Larson, P. C. Frost, Z. Y. Zheng, C. A. Johnston, S. D. Bridgham, D. M. Lodge and G. A. Lamberti, Effects of upstream lakes on dissolved organic matter in streams, Limnol. Oceanogr., 2007, 52, 60–69.

    Article  CAS  Google Scholar 

  227. G. C. Shank, R. F. Whitehead, M. L. Smith, S. A. Skrabal and R. J. Kieber, Photodegradation of strong copper-complexing ligands in organic-rich estuarine waters, Limnol. Oceanogr., 2006, 51, 884–892.

    Article  CAS  Google Scholar 

  228. R. P. Schwarzenbach, B. I. Escher, K. Fenner, T. B. Hofstetter, C. A. Johnson, U. von Gunten and B. Wehrli, The challenge of micropollutants in aquatic systems, Science, 2006, 313, 1072–1077.

    Article  CAS  PubMed  Google Scholar 

  229. L. Lamon, M. D. Valle, A. Critto and A. Marcomini, Introducing an integrated climate change perspective in POPs modelling, monitoring and regulation, Environ. Pollut., 2009, 157, 1971–1980.

    Article  CAS  PubMed  Google Scholar 

  230. K. Ram and C. Anastasio, Photochemistry of phenanthrene, pyrene, and fluoranthene in ice and snow, Atmos. Environ., 2009, 43, 2252–2259.

    Article  CAS  Google Scholar 

  231. N. Matykiewiczova, J. Klanova and P. Klan, Photochemical degradation of PCBs in snow, Environ. Sci. Technol., 2007, 41, 8308–8314.

    Article  CAS  PubMed  Google Scholar 

  232. J. F. Niu, G. Yu and X. T. Liu, Advances in photolysis of persistent organic pollutants in water, Prog. Chem., 2005, 17, 938–948.

    CAS  Google Scholar 

  233. J. J. Guerard, P. L. Miller, T. D. Trouts and Y. P. Chin, The role of fulvic acid composition in the photosensitized degradation of aquatic contaminants, Aquat. Sci., 2009, 71, 160–169.

    Article  CAS  Google Scholar 

  234. D. M. Ricciuto, K. J. Davis and K. Keller, A Bayesian calibration of a simple carbon cycle model: The role of observations in estimating and reducing uncertainty, Global Biogeochem. Cycles, 2008, 22, GB2030.

    Article  CAS  Google Scholar 

  235. R. L. McKenzie, P. J. Aucamp, A. F. Bais, L. O. Bjorn and M. Ilyas, Changes in biologically-active ultraviolet radiation reaching the Earth’s surface, Photochem. Photobiol. Sci., 2007, 6, 218–231.

    Article  CAS  PubMed  Google Scholar 

  236. J. Stroeve, M. M. Holland, W. Maier, T. Scambos and M. Serreze, Arctic ice decline: Faster than forecast, Geophys. Res. Lett., 2007, 34, L09501.

    Article  Google Scholar 

  237. R. B. Setlow, The wavelengths in sunlight effective in producing skin cancer: A theoretical analysis, Proc. Natl. Acad. Sci. U. S. A., 1974, 71, 3363–3366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. G. A. Meehl, T. F. Stocker, W. D. Collins, P. Friedlingstein, A. T. Gaye, J. M. Gregory, A. Kitoh, R. Knutti, J. M. Murphy, A. Noda, S. C. B. Raper, I. G. Watterson, A. J. A. J. Weaver and Z.-C. Zhao, Global Climate Projections., in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller, Cambridge University Press, Cambridge, U. K.; New York, NY, USA, 2007, pp. 747–845.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Zepp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zepp, R.G., Erickson, D.J., Paul, N.D. et al. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks. Photochem Photobiol Sci 10, 261–279 (2011). https://doi.org/10.1039/c0pp90037k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp90037k

Navigation