Skip to main content
Log in

Antimicrobial mechanisms behind photodynamic effect in the presence of hydrogen peroxide

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This study describes the use of methylene blue (MB) plus light (photodynamic inactivation, PDI) in the presence of hydrogen peroxide (H2O2) to kill Staphylococcus aureus, Escherichia coli, and Candida albicans. When H2O2 was added to MB plus light there was an increased antimicrobial effect, which could be due to a change in the type of ROS generated or increased microbial uptake of MB. To clarify the mechanism, the production of ROS was investigated in the presence and absence of H2O2. It was observed that ROS production was almost inhibited by the presence of H2O2 when cells were not present. In addition, experiments using different sequence combinations of MB and H2O2 were performed and MB optical properties inside the cell were analyzed. Spectroscopy experiments suggested that the amount of MB was higher inside the cells when H2O2 was used before or simultaneously with PDI, and ROS formation inside C. albicans cells confirmed that ROS production is higher in the presence of H2O2. Moreover enzymatic reduction of MB by E. coli during photosensitizer uptake to the photochemically inactive leucoMB could be reversed by the oxidative effects of hydrogen peroxide, increasing ROS formation inside the microorganism. Therefore, the combination of a photosensitizer such as MB and H2O2 is an interesting approach to improve PDI efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. T. T. Yoshikawa, Antimicrobial resistance and aging: beginning of the end of the antibiotic era?, J. Am. Geriatr. Soc., 2002, 50, 226–229.

    Article  Google Scholar 

  2. R. Wise, T. Hart and O. Cars, Antimicrobial resistance, Br. Med. J., 1998, 37, 609–610.

    Article  Google Scholar 

  3. R. E. Hancock and A. Bell, Antibiotic uptake into gram-negative bacteria, Eur. J. Clin. Microbiol. Infect. Dis., 1988, 7, 713–720.

    Article  CAS  Google Scholar 

  4. D. M. Livermore, Antibiotic resistance in staphylococci, Int. J. Antimicrob. Agents, 2001, 16, 3–10.

    Article  Google Scholar 

  5. R. Agarwal, M. Athar, S. A. Urban, D. R. Bickers and H. Mukhtar, Involvement of singlet oxygen in chloroaluminium phthalocyanine tetrasulfonate-mediated photoenhancement of lipid peroxidation in rat epidermal microsomes, Cancer Lett., 1991, 56, 125–129.

    Article  CAS  Google Scholar 

  6. D. A. Phoenix, Z. Sayed, S. Hussain, F. Harris and M. Wainwright, The phototoxicity of phenothiazinium derivates against Escherichia coli and Staphylococcus aureus, FEMS Immunol. Med. Microbiol., 2003, 39, 17–22.

    Article  CAS  Google Scholar 

  7. M. R. Hamblin, D. A. O’Donnell, N. Murthy, K. Rajagopalan, N. Michaud, M. E. Sherwood and T. Hasan, Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria, J. Antimicrob. Chemother., 2002, 49, 941–951.

    Article  CAS  Google Scholar 

  8. M. Wainwright, D. A. Phoenix, J. Marland, D. R. A. Wareing and F. J. Bolton, A study of photobactericidal activity in phenothiazinium series, FEMS Immunol. Med. Microbiol., 1997, 19, 75–83.

    Article  CAS  Google Scholar 

  9. T. A. Dahl, W. R. Midden and P. E. Hartman, Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen, J. Bacteriol., 1989, 171, 2188–2194.

    Article  CAS  Google Scholar 

  10. J. S. Friedberg, C. Skema, E. D. Baum, J. Burdick, S. A. Vinogradov, D. F. Wilson, A. D. Horan and I. Nachamkin, In vitro effects of photodynamic therapy on Aspergillus fumigatus, J. Antimicrob. Chemother., 2001, 48, 105–107.

    Article  CAS  Google Scholar 

  11. O. Feuerstein, D. Moreinos and D. Steinberg, Synergic antibacterial effect between visible light and hydrogen peroxide on Streptococcus mutans, J. Antimicrob. Chemother., 2006, 57, 872–876.

    Article  CAS  Google Scholar 

  12. R. R. Hayek, N. S. Araujo, M. A. Gioso, J. Ferreira, C. A. Baptista- Sobrinho, A. M. Yamada and M. S. Ribeiro, Comparative study between the effects of photodynamic therapy and conventional therapy on microbial reduction in ligature-induced peri-implantitis in dogs, J. Periodontol., 2005, 76, 1275–1281.

    Article  Google Scholar 

  13. A. S. Garcez, S. C.Núñez, J. L. Lage-Marques, A.O. C. Jorge and M. S. Ribeiro, Efficiency of NaOCl and laser-assisted photosensitization on the reduction of Enterococcus faecalis in vitro, Oral Surg., Oral Med., Oral Pathol., Oral Radiol. Endodontol., 2006, 102, e93-98.

  14. C. McCullagh and P. K. J. Robertson, Photo-dynamic biocidal action of methylene blue and hydrogen peroxide on the cyanobacterium Synechococcus leopoliensis under visible light irradiation, J. Photochem. Photobiol., B, 2006, 83, 63–68.

    Article  CAS  Google Scholar 

  15. C. McCullagh and P. K. J. Robertson, Photodestruction of Chlorella vulgaris by methylene blue or nuclear fast red combined with hydrogen peroxide under visible light irradiation, Environ. Sci. Technol., 2006, 40, 2421–2425.

    Article  CAS  Google Scholar 

  16. N. Daghastanli, R. Itri and M. S. Baptista, Singlet oxygen reacts with 2′,7′-Dichlorodihydrofluorescein and contributes to the formation of 2′,7′-Dichlorofluorescein, Photochem. Photobiol., 2008, 84, 1238–1243.

    Article  CAS  Google Scholar 

  17. D. Gabrieli, E. Belisle, D. Severino, A. J. Kowaltowski and M. S. Baptista, Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions, Photochem. Photobiol., 2004, 79, 227–232.

    Article  Google Scholar 

  18. A. Blázquez-Castro, J. C. Stockert, F. Sanz-Rodríguez, A. Zamarrón and A. Juarranz, Differential photodynamic response of cultured cells to methylene blue and toluidine blue: role of dark redox processes, Photochem. Photobiol. Sci., 2009, 8, 371–376.

    Article  Google Scholar 

  19. R. S. Funk and J. P. Krise, Exposure to hydrogen peroxide can increase the intracellular accumulation of drugs, Mol. Pharmaceutics, 2007, 4, 154–159.

    Article  CAS  Google Scholar 

  20. L. C. Seaver and J. A. Imlay, Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli, J. Bacteriol., 2001, 183, 7182–7189.

    Article  CAS  Google Scholar 

  21. C. S. Foote, Definition of type I and type II photosensitized oxidation., Photochem. Photobiol., 1991, 54, 659.

    Article  CAS  Google Scholar 

  22. M. C. De Rosa and R. J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev., 2002, 233-234, 351–371.

    Google Scholar 

  23. V.Y. Gak, V. A. Nadtochenko and J. Kiwi, Triplet-excited dye molecules (eosine and methylene blue) quenching by H2O2 in aqueous solution, J. Photochem. Photobiol., A, 1998, 116, 57–62.

    Article  CAS  Google Scholar 

  24. S. Baatout, P. De Boever and M. Mergeay, Physiological changes induced in four bacterial strains following oxidative stress, Prikl. Biokhim. Mikrobiol., 2006, 42, 418–427.

    CAS  PubMed  Google Scholar 

  25. M. Wainwright, Photodynamic antimicrobial chemotherapy (PACT), J. Antimicrob. Chemother., 1998, 42, 13–28.

    Article  CAS  Google Scholar 

  26. W. Caetano, P. S. Haddad, R. Itri, D. Severino, V. C. Vieira, M. S. Baptista, A. P. Schroder and C. M. Marques, Photo-induced destruction of giant vesicles in methylene blue solutions, Langmuir, 2007, 23, 1307–1314.

    Article  CAS  Google Scholar 

  27. L.M. Giroldo, M.P. Felipe, M.A. de Oliveira, E. Munin, L. P. Alves and M. S. Costa, Photodynamic antimicrobial chemotherapy (PACT) with methylene blue increases membrane permeability in Candida albicans., Lasers Med. Sci., 2009, 24, 109–112.

    Article  Google Scholar 

  28. J.M. May, Z.C. Quand C. E. Cobb, Reduction and uptake of methylene blue by human erythrocytes., Am. J. Physiol.: Cell Physiol., 2004, 286, C1390-C1398.

  29. G. T. Wondrak, NQO1-activated phenothiazinium redox cyclers for the targeted bioreductive induction of cancer cell apoptosis., Free Radical Biol. Med., 2007, 43, 178–190.

    Article  CAS  Google Scholar 

  30. M. S. Oliveira, M. Lima, D. Severino, M. S. Baptista, P. Di Mascio and M. Tabak, Quenching of singlet molecular oxygen, O2 (1Dg), by dipyridamole and derivatives, Photochem. Photobiol., 2007, 83, 1379–1385.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Simões Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcez, A.S., Núñez, S.C., Baptista, M.S. et al. Antimicrobial mechanisms behind photodynamic effect in the presence of hydrogen peroxide. Photochem Photobiol Sci 10, 483–490 (2011). https://doi.org/10.1039/c0pp00082e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00082e