Skip to main content
Log in

Detection of coalescing agents in water-borne latex emulsions using an environment sensitive fluorescent probe

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this paper we report the determination of partitioning of coalescing agents (organic co-solvents) in water-borne latex emulsions by means of a fluorescence method. An environment-sensitive fluorescent probe1 was copolymerized viaemulsion polymerization. The presence of organic co-solvents inside the polymer particles is revealed by the photophysical properties of the probe. In particular, the position of the fluorescence emission maximum of co-polymerized 1 can be used to measure the amount of coalescing agent present in the polymer particles. The spectral shifts are shown to be due to the softening of the matrix, rather than to solvation of the probe by the added co-solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. F. Routh and W. B. Russel, Deformation mechanisms during latex film formation: Experimental evidence, Ind. Eng. Chem. Res., 2001, 40, 4302–4308.

    Article  CAS  Google Scholar 

  2. P. A. Steward, J. Hearn and M. C. Wilkinson, An overview of polymer latex film formation and properties, Adv. Colloid Interface Sci., 2000, 86, 195–267.

    Article  CAS  PubMed  Google Scholar 

  3. M. Lahtinen, E. Glad, S. Koskimies, F. Sundholm and K. Rissanen, Synthesis of novel reactive coalescing agents and their application in a latex coating, J. Appl. Polym. Sci., 2003, 87, 610–615.

    Article  CAS  Google Scholar 

  4. B. Gharaibeh, M. Omar, A. J. Salazar and K. Saito, Fluorescence emission sensing in coatings: Method for defects detection in coated surfaces of structural elements, Prog. Org. Coat., 2007, 58, 282–289.

    Article  CAS  Google Scholar 

  5. I. Ludwig, W. Schabel, P. Ferlin, J. C. Castaing and M. Kind, Drying, film formation and open time of aqueous polymer dispersions, Eur. Phys. J. Spec. Top., 2009, 166, 39–43.

    Article  Google Scholar 

  6. I. Ludwig, W. Schabel, M. Kind, J. C. Castaing and P. Ferlin, Drying and film formation of industrial waterborne latices, AIChE J., 2007, 53, 549–560.

    Article  CAS  Google Scholar 

  7. A. Toussaint, M. DeWilde, F. Molenaar and J. Mulvihill, Calculation of T-g and MFFT depression due to added coalescing agents, Prog. Org. Coat., 1997, 30, 179–184.

    Article  CAS  Google Scholar 

  8. S. Zohrehvand, K. te Nijenhuis, Film formation from monodisperse acrylic latices, part 4: the role of coalescing agents in the film formation process, Colloid Polym. Sci., 2005, 283, 1305–1312.

    Article  CAS  Google Scholar 

  9. A. Toussaint and M. DeWilde, A method to predict the distribution coefficient of coalescing agents between latex particles and the water phase, Prog. Org. Coat., 1997, 30, 173–177.

    Article  CAS  Google Scholar 

  10. S. Zohrehvand, K. te Nijenhuis, Film formation from monodisperse acrylic lattices - Part 3: Drying and ageing of acrylic latex films, Prog. Org. Coat., 2006, 55, 11–19.

    Article  CAS  Google Scholar 

  11. S. Zohrehvand, K. te Nijenhuis, Film formation from monodisperse acrylic latices - 5. Drying and ageing in coalescing agent containing latex films, J. Colloid Interface Sci., 2005, 288, 75–82.

    Article  CAS  PubMed  Google Scholar 

  12. A. Du Chesne, A. Bojkova, J. Gapinski, D. Seip and P. Fischer, Film formation and redispersion of waterborne latex coatings, J. Colloid Interface Sci., 2000, 224, 91–98.

    Article  CAS  PubMed  Google Scholar 

  13. A. Turshatov, J. Adams and D. Johannsmann, Interparticle contact in drying polymer dispersions probed by time resolved fluorescence, Macromolecules, 2008, 41, 5365–5372.

    Article  CAS  Google Scholar 

  14. S. Ugur, A. Alemdar and O. Pekcan, Films formed from polystyrene latex/clay composites: A fluorescence study, J. Coat. Technol. Res., 2005, 2, 565–575.

    Article  CAS  Google Scholar 

  15. L. H. Chen, D. W. McBranch, H. L. Wang, R. Helgeson, F. Wudl and D. G. Whitten, Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 12287–12292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. K. Korn, P. Gardellin, B. Liao, M. Amacker, A. Bergstrom, H. Bjorkman, A. Camacho, S. Dorhofer, K. Dorre, J. Enstrom, T. Ericson, T. Favez, M. Gosch, A. Honegger, S. Jaccoud, M. Lapczyna, E. Litborn, P. Thyberg, H. Winter and R. Rigler, Gene expression analysis using single molecule detection, Nucleic Acids Res., 2003, 31, e89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. A. Levina, A. Mitra and P. A. Lay, Recent developments in ruthenium anticancer drugs, Metallomics, 2009, 1, 458–470.

    Article  CAS  PubMed  Google Scholar 

  18. L. Marcu, J. A. Jo, Q. Y. Fang, T. Papaioannou, T. Reil, J. H. Qiao, J. D. Baker, J. A. Freischlag and M. C. Fishbein, Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy, Atherosclerosis, 2009, 204, 156–164.

    Article  CAS  PubMed  Google Scholar 

  19. V. A. Sineshchekov, O. B. Ogorodnikova and J. L. Weller, Fluorescence and photochemical properties of phytochromes A and B in etiolated pea seedlings, J. Photochem. Photobiol., B, 1999, 49, 204–211.

    Article  CAS  Google Scholar 

  20. H. L. Wang, D. W. McBranch, R. J. Donohoe, S. Xu, B. Kraabel, L. H. Chen, D. Whitten, R. Helgeson and F. Wudl, Highly efficient energy and charge transfer in thin self-assembled multilayered polymer films, Synth. Met., 2001, 121, 1367–1368.

    Article  CAS  Google Scholar 

  21. C. Xie, C. Q. Dong and J. C. Ren, Study on homogeneous competitive immune reaction by fluorescence correlation spectroscopy: Using synthetic peptide as antigen, Talanta, 2009, 79, 971–974.

    Article  CAS  PubMed  Google Scholar 

  22. N. Felorzabihi, P. Froimowicz, J. C. Haley, G. R. Bardajee, B. X. Li, E. Bovero, F. van Veggel and M. A. Winnik, Determination of the Forster Distance in Polymer Films by Fluorescence Decay for Donor Dyes with a Nonexponential Decay Profile, J. Phys. Chem. B, 2009, 113, 2262–2272.

    Article  CAS  PubMed  Google Scholar 

  23. O. Pekcan, D. Kaya and M. Erdogan, Fluorescence quenching method for measuring monomer consumption rates during free-radical crosslinking copolymerization, J. Appl. Polym. Sci., 2001, 80, 1907–1913.

    Article  CAS  Google Scholar 

  24. Y. Yilmaz, Y. Yagci and O. Pekcan, Fluorescence technique to study free-radical polymerization of 2-vinylnaphthalene, J. Macromol. Sci., Part A: Pure Appl. Chem., 2001, 38, 741–749.

    Article  Google Scholar 

  25. O. Pekcan, S. Ugur and Y. Yilmaz, Real-time monitoring of swelling and dissolution of poly(methyl methacrylate) discs using fluorescence probes, Polymer, 1997, 38, 2183–2189.

    Article  CAS  Google Scholar 

  26. J. M. Warman, R. D. Abellon, L. H. Luthjens, J. W. A. Suykerbuyk, H. J. Verhey and J. W. Verhoeven, In situ monitoring of the radiation-induced polymerisation of methylmethacrylate using fluorogenic molecular probes, Nucl. Instrum. Methods Phys. Res., Sect. B, 1999, 151, 361–366.

    Article  CAS  Google Scholar 

  27. O. Pekcan and D. Kaya, Fast transient fluorescence (FTRF) technique for monitoring free-radical crosslinking copolymerization (FCC) of styrene (S) with various divinylbenzene (DVB) contents, Polymer, 2001, 42, 7865–7871.

    Article  CAS  Google Scholar 

  28. D. I. Lee, The effects of latex coalescence and interfacial crosslinking on the mechanical properties of latex films, Polymer, 2005, 46, 1287–1293.

    Article  CAS  Google Scholar 

  29. F. Dobler, T. Pith, M. Lambla and Y. Holl, Coalescence mechanism of polymer colloids. 1. Coalescence under the influence of particle water interfacial-tension, J. Colloid Interface Sci., 1992, 152, 1–11.

    Article  CAS  Google Scholar 

  30. E. Arda and O. Pekcan, Time and temperature dependence of void closure, healing and interdiffusion during latex film formation, Polymer, 2001, 42, 7419–7428.

    Article  CAS  Google Scholar 

  31. O. Pekcan and E. Arda, Void closure and interdiffusion in latex film formation by photon transmission and fluorescence methods, Colloids Surf., A, 1999, 153, 537–549.

    Article  CAS  Google Scholar 

  32. J. P. Tomba, D. Portinha, W. F. Schroeder, M. A. Winnik and W. Lau, Polymer diffusion in high-M/low-M hard-soft latex blends, Colloid Polym. Sci., 2009, 287, 367–378.

    Article  CAS  Google Scholar 

  33. M. Goes, M. de Groot, M. Koeberg, J. W. Verhoeven, N. R. Lokan, M. J. Shephard, M. N. Paddon-Row, Temperature dependence of charge-transfer fluorescence from extended and U-shaped donor–bridge–acceptor systems in glass-forming solvents, J. Phys. Chem. A, 2002, 106, 2129–2134.

    Article  CAS  Google Scholar 

  34. L. W. Jenneskens, H. J. van Ramesdonk, H. J. Verhey, G. D. B. van Houwelingen and J. W. Verhoeven, Discrimination between polarity and mobility effects on the charge-transfer fluorescence of fluoroprobe in organic matrices, Recl. Trav. Chim. Pays-Bas, 1989, 108, 453–454.

    Article  CAS  Google Scholar 

  35. L. W. Jenneskens, H. J. Verhey, H. J. van Ramesdonk, A. J. Witteveen and J. W. Verhoeven, Intramolecular charge-transfer fluorescence of 1-phenyl-4-[(4-cyano-1-naphthyl)methylene]piperidine as a morphology probe in alpha,omega-diacetyl poly(ethylene glycol) matrices, Macromolecules, 1991, 24, 4038–4040.

    Article  CAS  Google Scholar 

  36. H. J. Verhey, C. H. W. Bekker, J. W. Verhoeven, L. G. J. van der Ven and J. W. Hofstraat, Crosslinking and drying of a two-component waterborne coating monitored by a functionalized charge-transfer fluorescence probe, Polymer, 1997, 38, 4491–4497.

    Article  CAS  Google Scholar 

  37. J. W. Hofstraat, J. Veurink, B. Gebben, H. J. Verheij and J. W. Verhoeven, Charge-transfer fluorescent probes applied to the characterization of thermal and mechanical properties of polymers, J. Fluoresc., 1998, 8, 335–342.

    Article  CAS  Google Scholar 

  38. J. W. Hofstraat, H. J. Verhey, J. W. Verhoeven, M. U. Kumke, G. Li, S. L. Hemmingsen and L. B. McGown, Fluorescence lifetime studies of labelled polystyrene latices, Polymer, 1997, 38, 2899–2906.

    Article  CAS  Google Scholar 

  39. M. Goes, X. Y. Lauteslager, J. W. Verhoeven and J. W. Hofstraat, A blue excitable charge-transfer fluorescent probe and its fluorogenic derivative, Eur. J. Org. Chem., 1998, 2373–2377.

    Google Scholar 

  40. T. G. Fox and P. J. Flory, Second-Order Transition temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight, J. Appl. Phys., 1950, 21, 581–591.

    Article  CAS  Google Scholar 

  41. X. Y. Lauteslager, I. H. M. van Stokkum, H. J. van Ramesdonk, A. M. Brouwer and J. W. Verhoeven, Conformational dynamics of semiflexibly bridged donor–acceptor systems studied with a streak camera and spectrotemporal parametrization of fluorescence, J. Phys. Chem. A, 1999, 103, 653–659.

    Article  CAS  Google Scholar 

  42. W. H. Melhuish, Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute, J. Phys. Chem. A, 1961, 21, 229–235.

    Article  Google Scholar 

  43. G. F. Mes, B. de Jong, H. J. van Ramesdonk, J. W. Verhoeven, J. M. Warman, M. P. de Haas, L. E. W. Horsman-van den Dool, Excited-state dipole-moment and solvatochromism of highly fluorescent rod-shaped bichromophoric molecules, J. Am. Chem. Soc., 1984, 106, 6524–6528.

    Article  CAS  Google Scholar 

  44. R. M. Hermant, N. A. C. Bakker, T. Scherer, B. Krijnen and J. W. Verhoeven, Systematic study of a series of highly fluorescent rod-shaped donor–acceptor systems, J. Am. Chem. Soc., 1990, 112, 1214–1221.

    Article  CAS  Google Scholar 

  45. T. Scherer, W. Hielkema, B. Krijnen, R. M. Hermant, C. Eijckelhoff, F. Kerkhof, A. K. F. Ng, R. Verleg, E. B. van der Tol, A. M. Brouwer and J. W. Verhoeven, Synthesis and exploratory photophysical investigation of donor bridge acceptor systems derived from N-substituted 4-piperidones, Recl. Trav. Chim. Pays-Bas, 1993, 112, 535–548.

    Article  CAS  Google Scholar 

  46. J. M. Warman, R. D. Abellon, H. J. Verhey, J. W. Verhoeven and J. W. Hofstraat, Maleimido-fluoroprobe: A dual-purpose fluorogenic probe of polymerization dynamics, J. Phys. Chem. B, 1997, 101, 4913–4916.

    Article  CAS  Google Scholar 

  47. H. J. Verhey, C. H. W. Bekker, J. W. Verhoeven and J. W. Hofstraat, A fluorogenic charge-transfer polarity probe for the derivatization of thiols and amines, New J. Chem, 1996, 20, 809–814.

    CAS  Google Scholar 

  48. J. W. Verhoeven, in Topics in Fluorescence Spectroscopy, ed. C. D. Geddes and J. R. Lakowicz, Springer, New York, 2005.

  49. M. Bixon, J. Jortner and J. W. Verhoeven, Lifetimes for radiative charge recombination in donor–acceptor molecules, J. Am. Chem. Soc., 1994, 116, 7349–7355.

    Article  CAS  Google Scholar 

  50. J. R. Siekierzycka, C. W. Hippius, R. M. Williams and A. M. Brouwer, Polymer glass transitions switch electron transfer in individual molecules, J. Am. Chem. Soc., 2010, 132, 1240–1242.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert M. Brouwer.

Additional information

This article is published as part of a themed issue in appreciation of the many important contributions made to the field of molecular photophysics by Jan Verhoeven.

Electronic supplementary information (ESI) available: Emulsion polymerization recipes; physical characteristics of the coalescing agents; full details of the steady-state fluorescence spectra; time-resolved fluorescence of neat (non-labeled) hydrophobic S/2-EA and hydrophilic MMA/EA latices. See DOI: 10.1039/c0pp00065e

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raja, T.N., Brouwer, A.M., Biemans, K. et al. Detection of coalescing agents in water-borne latex emulsions using an environment sensitive fluorescent probe. Photochem Photobiol Sci 9, 975–984 (2010). https://doi.org/10.1039/c0pp00065e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00065e

Navigation