Skip to main content
Log in

A photo- and electrochemically-active porphyrin–fullerene dyad electropolymer

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A hole- and electron-conducting polymer has been prepared by electropolymerization of a porphyrin–fullerene monomer. The porphyrin units are linked by aminophenylgroups to form a linear chain in which the porphyrin is an integral part of the polymer backbone. The absorption spectrum of a film formed on indium-tin-oxide-coated glass resembles that of a model porphyrin–fullerene dyad, but with significant peak broadening. The film demonstrates a first oxidation potential of 0.75 V vs.SCE, corresponding to oxidation of the porphyrinpolymer, and a first reduction potential of −0.63 V vs.SCE, corresponding to fullerenereduction. Time-resolved fluorescence studies show that the porphyrin first excited singlet state is strongly quenched by photoinduced electron transfer to fullerene. Transient absorption investigations reveal that excitation generates mobile charge carriers that recombine by both geminate and nongeminate pathways over a large range of time scales. Similar studies on a related polymer that lacks the fullerene component show complex, laser-intensity-dependent photoinduced electron transfer behavior. The properties of the porphyrin–fullerene electropolymer suggest that it may be useful in organic photovoltaic applications, wherein light absorption leads to charge separation within picoseconds in a “molecular heterojunction” with no requirement for exciton migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. F. Bedioui, J. Devynck and C. Bied-Charreton, Acc. Chem. Res., 1995, 28, 30.

    Article  CAS  Google Scholar 

  2. J. R. Fish, E. Kubaszewski, A. Peat, T. Malinski, J. Kaczor, P. Kus and L. Czuchajowski, Chem. Mater., 1992, 4, 795.

    Article  CAS  Google Scholar 

  3. C. Poriel, Y. Ferrand, P. Le Maux, C. Paul-Roth, G. Simonneaux and J. Rault-Berthelot, J. Electroanal. Chem., 2005, 583, 92.

    Article  CAS  Google Scholar 

  4. J. Basu and K. K. Rohatgimukherjee, Sol. Energy Mater., 1991, 21, 317.

    Article  CAS  Google Scholar 

  5. D.-S. Duanmu, Z.-P. Chen, X.-S. Yu and X. Zhou, Chin. J. Chem., 2004, 22, 779.

    Article  CAS  Google Scholar 

  6. D. Wohrle, J. Porphyrins Phthalocyanines, 2000, 4, 418.

    Article  CAS  Google Scholar 

  7. G. Li, S. Bhosale, S. Tao, R. Guo, S. Bhosale, F. Li, T. Zhang, T. Wang and J.-H. Furhop, Polymer, 2005, 46, 5299.

    Article  CAS  Google Scholar 

  8. C. Y. Lin, Y. C. Hung, C. M. Liu, C. F. Lo, Y. C. Lin and C. L. Lin, Dalton Trans., 2005, 396.

    Google Scholar 

  9. K. A. Macor, Y. O. Su, L. A. Miller and T. G. Spiro, Inorg. Chem., 1987, 26, 2594.

    Article  CAS  Google Scholar 

  10. A. Bettelheim, B. White, S. Raybuck and R. W. Murray, Inorg. Chem., 1987, 26, 1009.

    Article  CAS  Google Scholar 

  11. A. Bettelheim, B. A. White and R. W. Murray, J. Electroanal. Chem., 1987, 217, 271.

    Article  CAS  Google Scholar 

  12. A. Bettelheim, D. Ozer, R. Harth and R. W. Murray, J. Electroanal. Chem., 1989, 266, 93.

    Article  CAS  Google Scholar 

  13. B. A. White and R. W. Murray, J. Electroanal. Chem., 1985, 189, 345.

    Article  CAS  Google Scholar 

  14. E. M. Bruti, M. Giannetto, G. Mori and R. Seeber, Electroanalysis, 1999, 11, 565.

    Article  CAS  Google Scholar 

  15. S. Griveau, V. Albin, T. Pauporte, J. H. Zagal and F. Bedioui, J. Mater. Chem., 2002, 12, 225.

    Article  CAS  Google Scholar 

  16. P. A. Liddell, M. Gervaldo, J. W. Bridgewater, A. E. Keirstead, S. Lin, T. A. Moore, A. L. Moore and D. Gust, Chem. Mater., 2008, 20, 135.

    Article  CAS  Google Scholar 

  17. D. Gust and T. A. Moore, in The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, New York, 2000, vol. 8, ch. 57, pp. 153–190.

    CAS  Google Scholar 

  18. D. Gust, T. A. Moore and A. L. Moore, Acc. Chem. Res., 2001, 34, 40.

    Article  CAS  PubMed  Google Scholar 

  19. M. R. Wasielewski, Chem. Rev., 1992, 92, 435.

    Article  CAS  Google Scholar 

  20. S. Fukuzumi and H. Imahori, Electron Transfer in Chemistry, 2001, 927.

    Book  Google Scholar 

  21. D. M. Guldi, Chem. Soc. Rev., 2002, 31, 22.

    Article  CAS  PubMed  Google Scholar 

  22. H. Imahori, Org. Biomol. Chem., 2004, 2, 1425.

    Article  CAS  PubMed  Google Scholar 

  23. N. Martín, L. Sánchez, B. Illescas, I. Pérez, Chem. Rev., 1998, 98, 2527.

    Article  PubMed  Google Scholar 

  24. J.-F. Nierengarten, J.-F. Eckert, D. Felder, J.-F. Nicoud, N. Armaroli, G. Marconi, V. Vicinelli, C. Boudon, J.-P. Gisselbrecht, M. Gross, G. Hadziioannou, V. Krasnikov, L. Ouali, L. Echegoyen and S.-G. Liu, Carbon, 2000, 38, 1587.

    Article  CAS  Google Scholar 

  25. D. I. Schuster, Carbon, 2000, 38, 1607.

    Article  CAS  Google Scholar 

  26. T. J. Kesti, N. V. Tkachenko, V. Vehmanen, H. Yamada, H. Imahori, S. Fukuzumi and H. Lemmetyinen, J. Am. Chem. Soc., 2002, 124, 8067.

    Article  CAS  PubMed  Google Scholar 

  27. A. Cravino and N. S. Sariciftci, J. Mater. Chem., 2002, 12, 1931.

    Article  CAS  Google Scholar 

  28. A. Cravino, Polym. Int., 2007, 56, 943.

    Article  CAS  Google Scholar 

  29. J. Roncali, Chem. Soc. Rev., 2005, 34, 483.

    Article  CAS  PubMed  Google Scholar 

  30. D. Dubois, G. Moninot, W. Kutner, M. T. Jones and K. M. Kadish, J. Phys. Chem., 1992, 96, 7137.

    Article  CAS  Google Scholar 

  31. M. E. Jamin and R. T. Iwamoto, Inorg. Chim. Acta, 1978, 27, 135.

    Article  CAS  Google Scholar 

  32. R. L. Hand and R. F. Nelson, J. Am. Chem. Soc., 1974, 96, 850.

    Article  CAS  Google Scholar 

  33. T. F. Guarr and F. C. Anson, J. Phys. Chem., 1987, 91, 4037.

    Article  CAS  Google Scholar 

  34. S. C. Paulson, S. A. Sapp and C. M. Elliott, J. Phys. Chem. B, 2001, 105, 8718.

    Article  CAS  Google Scholar 

  35. J. L. Bahr, D. Kuciauskas, P. A. Liddell, A. L. Moore, T. A. Moore and D. Gust, Photochem. Photobiol., 2000, 72, 598.

    Article  CAS  PubMed  Google Scholar 

  36. G. Kodis, P. A. Liddell, A. L. Moore, T. A. Moore and D. Gust, J. Phys. Org. Chem., 2004, 17, 724.

    Article  CAS  Google Scholar 

  37. D. Kuciauskas, S. Lin, G. R. Seely, A. L. Moore, T. A. Moore, D. Gust, T. Drovetskaya, C. A. Reed and P. D. W. Boyd, J. Phys. Chem., 1996, 100, 15926.

    Article  CAS  Google Scholar 

  38. D. Kuciauskas, P. A. Liddell, S. Lin, S. Stone, A. L. Moore, T. A. Moore and D. Gust, J. Phys. Chem. B, 2000, 104, 4307.

    Article  CAS  Google Scholar 

  39. P. A. Liddell, J. P. Sumida, A. N. Macpherson, L. Noss, G. R. Seely, K. N. Clark, A. L. Moore, T. A. Moore and D. Gust, Photochem. Photobiol., 1994, 60, 537.

    Article  CAS  Google Scholar 

  40. P. A. Liddell, D. Kuciauskas, J. P. Sumida, B. Nash, D. Nguyen, A. L. Moore, T. A. Moore and D. Gust, J. Am. Chem. Soc., 1997, 119, 1400.

    Article  CAS  Google Scholar 

  41. C. A. Reed and R. D. Bolskar, Chem. Rev., 2000, 100, 1075.

    Article  CAS  PubMed  Google Scholar 

  42. P. A. Liddell, G. Kodis, D. Kuciauskas, J. Andréasson, A. L. Moore, T. A. Moore and D. Gust, Phys. Chem. Chem. Phys., 2004, 6, 5509.

    Article  CAS  Google Scholar 

  43. N. V. Tkachenko, L. Rantala, A. Y. Tauber, J. Helaja, P. H. Hynninen and H. Lemmetyinen, J. Am. Chem. Soc., 1999, 121, 9378.

    Article  CAS  Google Scholar 

  44. N. Aratani, A. Osuka, H. S. Cho and D. Kim, J. Photochem. Photobiol., C, 2002, 3, 25.

    Article  CAS  Google Scholar 

  45. I.-W. Hwang, T. Kamada, T. K. Ahn, D. M. Ko, T. Nakamura, A. Tsuda, A. Osuka and D. Kim, J. Am. Chem. Soc., 2004, 126, 16187.

    Article  CAS  PubMed  Google Scholar 

  46. Y. Nakamura, I.-W. Hwang, N. Aratani, T. K. Ahn, D. M. Ko, A. Takagi, T. Kawai, T. Matsumoto, D. Kim and A. Osuka, J. Am. Chem. Soc., 2005, 127, 236.

    Article  CAS  PubMed  Google Scholar 

  47. A. Morandeira, E. Vauthey, A. Schuwey and A. Gossauer, J. Phys. Chem. A, 2004, 108, 5741.

    Article  CAS  Google Scholar 

  48. J.-S. Hsiao, B. P. Krueger, R. W. Wagner, T. E. Johnson, J. K. Delaney, D. C. Mauzerall, G. R. Fleming, J. S. Lindsey, D. F. Bocian and R. J. Donohoe, J. Am. Chem. Soc., 1996, 118, 11181.

    Article  CAS  Google Scholar 

  49. S. Faure, C. Stern, R. Guilard and P. D. Harvey, J. Am. Chem. Soc., 2004, 126, 1253.

    Article  CAS  PubMed  Google Scholar 

  50. J. Larsen, J. Andersson, T. Polivka, J. Sly, M. J. Crossley, J. Sundstrom and E. Akesson, Chem. Phys. Lett., 2005, 403, 205.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana L. Moore, Thomas A. Moore or Devens Gust.

Additional information

This article is published as part of a themed issue in appreciation of the many important contributions made to the field of molecular photophysics by Jan Verhoeven.

Electronic supplementary information (ESI) available: Synthesis and characterization of new compounds, experimental details for electrochemical and spectroscopic studies, Fig. S2 showing transient absorption kinetics at 880 nm for poly1 on ITO-coated glass. See DOI: 10.1039/c0pp00013b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gervaldo, M., Liddell, P.A., Kodis, G. et al. A photo- and electrochemically-active porphyrin–fullerene dyad electropolymer. Photochem Photobiol Sci 9, 890–900 (2010). https://doi.org/10.1039/c0pp00013b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00013b

Navigation