Skip to main content
Log in

Chemical and physical aspects of charge transfer in the fluorescence intermittency of single molecules and quantum dots

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We propose a synthetic view of the blinking of single molecules and single semiconductor nanocrystals, in which chemical and physical viewpoints play equally useful and important parts. The initial steps of charge transfer involve photophysical and physical processes. Trapping and stabilization of the separated charges are quick processes which can be described in physical terms, but which often lead to new chemical species. This is in particular true in fluid solutions, where many chemical and redox reactions become possible. Recent work has demonstrated how the addition of both oxidizing and reducing agents in the solution can help control the blinking rates of dye molecules and improve their photostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. E. Moerner and M. Orrit, Illuminating single molecules, Science, 1999, 283, 1670.

    Article  CAS  PubMed  Google Scholar 

  2. F. Kulzer, T. Xia and M. Orrit, Single Molecules as Optical Nanoprobes for Soft and Complex Matter, Angew. Chem., Int. Ed., 2010, 49, 854–866.

    Article  CAS  Google Scholar 

  3. W. E. Moerner, Optical measurements of single molecules in cells, TrAC, Trends Anal. Chem., 2003, 22, 544–548.

    Article  CAS  Google Scholar 

  4. T. Schmidt and G. J. Schütz, Single-Molecule Analysis of Biomembranes, in Handbook of Single-Molecule Biophysics, ed. P. Hinterdorfer and A. M. van Oijen, Springer, Berlin, 2009, DOI: 10.1007/978-0-387-76497-9_2.

    Google Scholar 

  5. Y. J. Lee, D. Y. Kim, J. K. Grey and P. F. Barbara, Variable temperature single-molecule dynamics of MEH-PPV, ChemPhysChem, 2005, 6, 2404–2409.

    Article  CAS  PubMed  Google Scholar 

  6. S. Masuo, T. Vosch, M. Cotlet, P. Tinnefeld, S. Habuchi, T. D. M. Bell, I. Oesterling, D. Beljonne, B. Champagne, K. Mullen, M. Sauer, J. Hofkens, F. C. De Schryver, Multichromophoric dendrimers as single-photon sources: A single-molecule study, J. Phys. Chem. B, 2004, 108, 16686–16696.

    Article  CAS  Google Scholar 

  7. F. C. De Schryver, T. Vosch, M. Cotlet, M. Van der Auweraer, K. Mullen and J. Hofkens, Energy dissipation in multichromophoric single dendrimers, Acc. Chem. Res., 2005, 38, 514–522.

    Article  PubMed  CAS  Google Scholar 

  8. E. M. H. P. van Dijk, J. Hernando, J. J. Garcia-Lopez, M. Crego-Calama, D. N. Reinhoudt, L. Kuipers, M. F. Garcia-Parajo, N. F. van Hulst, Single-molecule pump–probe detection resolves ultrafast pathways in individual and coupled quantum systems, Phys. Rev. Lett., 2005, 94, 078302.

    Article  PubMed  CAS  Google Scholar 

  9. S. W. Hell, Far-field optical nanoscopy, Science, 2007, 316, 1153–58.

    Article  CAS  PubMed  Google Scholar 

  10. T. Basché, S. Kummer, C. Bräuchle, Single-molecule optical switching of terrylene in p-terphenyl, Nature, 1995, 373, 132–134.

    Article  Google Scholar 

  11. R. Zondervan, F. Kulzer, S. B. Orlinskii and M. Orrit, Photoblinking of Rhodamine 6G in Polyvinylalcohol: Radical Dark State formed through the Triplet, J. Phys. Chem. A, 2003, 107, 6770–6776.

    Article  CAS  Google Scholar 

  12. H. Yang, G. B. Luo, P. Karnchanaphanurach, T. M. Louie, I. Rech, S. Cova, L. Y. Xun and X. S. Xie, Protein conformational dynamics probed by single-molecule electron transfer, Science, 2003, 302, 262–266.

    Article  CAS  PubMed  Google Scholar 

  13. A. M. Boiron, P. Tamarat, B. Lounis, R. Brown and M. Orrit, Are the Spectral Trails of Single Molecules Consistent with the Standard Two-Level System Model of Glasses at Low Temperatures?, Chem. Phys., 1999, 247, 119–132.

    Article  CAS  Google Scholar 

  14. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman and T. D. Harris, Fluorescence intermittency in single cadmium selenide nanocrystals, Nature, 1996, 383, 802–804.

    Article  CAS  Google Scholar 

  15. M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher and D. J. Nesbitt, Non-exponential blinking kinetics of single CdSe quantum dots: a universal power law behavior, J. Chem. Phys., 2000, 112, 3117–3120.

    Article  CAS  Google Scholar 

  16. R. Verberk, A. M. van Oijen and M. Orrit, Simple model for the power-law blinking of single semiconductor nanocrystals, Phys. Rev. B, 2002, 66, 233202.

    Article  CAS  Google Scholar 

  17. P. H. Sher, J. M. Smith, P. A. Dalgarno, R. J. Warburton, X. Chen, P. J. Dobson, S. M. Daniels, N. L. Pickett, P. O’Brien, Power law carrier dynamics in semiconductor nanocrystals at nanosecond timescales, Appl. Phys. Lett., 2008, 92, 101111.

    Article  CAS  Google Scholar 

  18. M. Haase, C. G. Hubner, E. Reuther, A. Herrmann, K. Mullen and T. Basche, Exponential and power-law kinetics in single-molecule fluorescence intermittency, J. Phys. Chem. B, 2004, 108, 10445–10450.

    Article  CAS  Google Scholar 

  19. J. Schuster, F. Cichos, C. von Borczyskowski, Influence of self-trapped states on the fluorescence intermittency of single molecules, Appl. Phys. Lett., 2005, 87, 051915.

    Article  CAS  Google Scholar 

  20. E. K. L. Yeow, S. M. Melnikov, T. D. M. Bell, F. C. DeSchryver and J. Hofkens, Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface, J. Phys. Chem. A, 2006, 110, 1726–1734.

    Article  CAS  PubMed  Google Scholar 

  21. J. P. Hoogenboom, J. Hernando, E. M. P. H. van Dijk, N. F. van Hulst, M. Garcia-Parajo, Power-law blinking in the fluorescence of single organic molecules, ChemPhysChem, 2007, 8, 823–833.

    Article  CAS  PubMed  Google Scholar 

  22. A. L. Efros and M. Rosen, Random telegraph signal in the photoluminescence intensity of a single quantum dot, Phys. Rev. Lett., 1997, 78, 1110–1113.

    Article  CAS  Google Scholar 

  23. F. Cichos, C. von Borczyskowski and M. Orrit, Power-law intermittency of single emitters, Curr. Opin. Colloid Interface Sci., 2007, 12, 272–284.

    Article  CAS  Google Scholar 

  24. P. Frantsuzov, M. Kuno, B. Janko and R. A. Marcus, Universal emission intermittency in quantum dots, nanorods and nanowires, Nat. Phys., 2008, 4, 519–522.

    Article  Google Scholar 

  25. F. D. Stefani, J. P. Hoogenboom and E. Barkai, Beyond quantum jumps: Blinking nanoscale light emitters, Phys. Today, 2009, 62, 34–39.

    Article  CAS  Google Scholar 

  26. J. Vogelsang, R. Kasper, C. Steinhauer, B. Person, M. Heilemann, M. Sauer and P. Tinnefeld, A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes, Angew. Chem., Int. Ed., 2008, 47, 5465–5469.

    Article  CAS  Google Scholar 

  27. See for example: http://en.wikipedia.org/wiki/Blind_men_and_an_elephant.

  28. R. Lesclaux and J. Joussot-Dubien, Electron photoejection from aromatic molecules in condensed media, in Organic Molecular Photophysics, ed. J. B. Birks, Wiley, New York, vol. 1, 1973, chapter 9, p. 457.

    Google Scholar 

  29. W. Hayes and A. M. Stoneham, Defects and Defect Processes in Nonmetallic Solids, Wiley, New York, 1985, p. 29.

    Google Scholar 

  30. M. Orrit, J. Bernard J., Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal, Phys. Rev. Lett., 1990, 65, 2716.

    Article  CAS  PubMed  Google Scholar 

  31. M. Kuno, D. P. Fromm, S. T. Johnson, A. Gallagher and D. J. Nesbitt, Modeling distributed kinetics in isolated semiconductor quantum dots, Phys. Rev. B, 2003, 67, 125304.

    Article  CAS  Google Scholar 

  32. J. N. Clifford, T. D. M. Bell, P. Tinnefeld, M. Heilemann, S. M. Melnikov, J. Hotta, M. Sliwa, P. Dedecker, M. Sauer, J. Hofkens and E. K. L. Yeow, Fluorescence of single molecules in polymer films: Sensitivity of blinking to local environment, J. Phys. Chem. B, 2007, 111, 6987–6991.

    Article  CAS  PubMed  Google Scholar 

  33. M. Heilemann, S. van de Linde, A. Mukherjee and M. Sauer, Super-Resolution Imaging with Small Organic Fluorophores, Angew. Chem., Int. Ed., 2009, 48, 6903–6908.

    Article  CAS  Google Scholar 

  34. L. Fleury, J. M. Segura, G. Zumofen, B. Hecht and U. P. Wild, Nonclassical photon statistics in single-molecule fluorescence at room temperature, Phys. Rev. Lett., 2000, 84, 1148–1151.

    Article  CAS  PubMed  Google Scholar 

  35. P. Tinnefeld, K. D. Weston, T. Vosch, M. Cotlet, T. Weil, J. Hofkens, K. Mullen, F. C. De Schryver and M. Sauer, Antibunching in the emission of a single tetrachromophoric dendritic system, J. Am. Chem. Soc., 2002, 124, 14310–14311.

    Article  CAS  PubMed  Google Scholar 

  36. V. E. Korobov and A. K. Chibisov, Primary processesin photochemistry of rhodamine dyes, J. Photochem., 1978, 9, 411.

    Article  CAS  Google Scholar 

  37. R. A. Marcus, Theory of oxidation-reduction reactions involving electron transfer, J. Chem. Phys., 1956, 24, 966.

    Article  CAS  Google Scholar 

  38. M. Tachiya and A. Mozumder, Kinetics of geminate-ion recombination by electron tunnelling, Chem. Phys. Lett., 1975, 34, 77–79.

    Article  CAS  Google Scholar 

  39. M. Tachiya and A. Mozumder, Model of pre-existing traps for electrons in polar glasses, J. Chem. Phys., 1974, 60, 3037–3041.

    Article  CAS  Google Scholar 

  40. E. D. Bott, E. A. Riley, B. Kahr and P. J. Reid, Proton-Transfer Mechanism for Dispersed Decay Kinetics of Single Molecules Isolated in Potassium Hydrogen Phthalate, ACS Nano, 2009, 3, 2403–2411.

    Article  CAS  PubMed  Google Scholar 

  41. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier and B. Dubertret, Towards non-blinking colloidal quantum dots, Nat. Mater., 2008, 7, 659.

    Article  CAS  PubMed  Google Scholar 

  42. X. Y. Wang, X. F. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros and T. D. Krauss, Non-blinking semiconductor nanocrystals, Nature, 2009, 459, 686–689.

    Article  CAS  PubMed  Google Scholar 

  43. M. J. Uren, D. J. Day and M. J. Kirton, 1/f and random telegraph noise in silicon metal-oxide-semiconductor field-effect transistors, Appl. Phys. Lett., 1985, 47, 1195–1197.

    Article  CAS  Google Scholar 

  44. R. Verberk and M. Orrit, Photon Statistics in the Fluorescence of Single Molecules and Nanocrystals: Correlation Functions versus Distributions of On- and Off-times, J. Chem. Phys., 2003, 119, 2214–2222.

    Article  CAS  Google Scholar 

  45. M. Lippitz, F. Kulzer and M. Orrit, Statistical Evaluation of Single Nano-Object Fluorescence, ChemPhysChem, 2005, 6, 770–789.

    Article  CAS  PubMed  Google Scholar 

  46. J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer and P. Tinnefeld, Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 8107–8112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. J. Vogelsang, T. Cordes and P. Tinnefeld, Single-molecule photophysics of oxazines on DNA and its application in a FRET switch, Photochem. Photobiol. Sci., 2009, 8, 486–496.

    Article  CAS  PubMed  Google Scholar 

  48. I. Rasnik, S. A. Mc Kinney and T. Ha, Nonblinking and longlasting single-molecule fluorescence imaging, Nat. Methods, 2006, 3, 891–893.

    Article  CAS  PubMed  Google Scholar 

  49. T. Cordes, J. Vogelsang and P. Tinnefeld, On the Mechanism of Trolox as Antiblinking and Antibleaching Reagent, J. Am. Chem. Soc., 2009, 131, 5018–5019.

    Article  CAS  PubMed  Google Scholar 

  50. S. Kuznetsova, G. Zauner, T. J. Aartsma, H. Engelkamp, N. Hatzakis, A. E. Rowan, R. J. M. Nolte, P. C. M. Christianen and G. W. Canters, The enzyme mechanism of nitrite reductase studied at single-molecule level, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 3250–3255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. M. Bates, T. R. Blosser and X. W. Zhuang, Short-range spectroscopic ruler based on a single-molecule optical switch, Phys. Rev. Lett., 2005, 94, 108101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. G. T. Dempsey, M. Bates, W. E. Kowtoniuk, D. R. Liu, R. Y. Tsien and X. W. Zhuang, Photoswitching mechanism of cyanine dyes, J. Am. Chem. Soc., 2009, 131, 18192–18193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is dedicated to the memory of Prof. Jacques Joussot-Dubien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orrit, M. Chemical and physical aspects of charge transfer in the fluorescence intermittency of single molecules and quantum dots. Photochem Photobiol Sci 9, 637–642 (2010). https://doi.org/10.1039/b9pp00192a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00192a

Navigation