Issue 16, 2009

Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug

Abstract

We report on the therapeutic ability of a novel cyclodextrin-covered gold nanoparticle (AuNP) carrier for noncovalent encapsulation of an anti-cancer drug. The surface of the AuNPs was functionalized with cyclodextrin as a drug pocket, anti-epidermal growth factor receptor (anti-EGFR) antibody as a targeting moiety, and poly(ethyleneglycol) (PEG) as an anti-fouling shell. β-Lapachone, an anti-cancer drug, was efficiently encapsulated into the hydrophobic cavity of cyclodextrin on the surface of the AuNP carriers (AuNP-1). The glutathione-mediated release of β-lapachone from the surface of AuNP-1 was demonstrated by an experiment with MCF-7 (low glutathione concentration) and A549 cells (high glutathione concentration). We also show that the introduction of an anti-EGFR antibody onto the AuNP carriers (AuNP-2) increased the intracellular uptake of AuNP carriers as compared with AuNP-1, which does not contain a targeting ligand. In the in vitro cytotoxicity study, AuNP-2 with β-lapachone exhibited a higher apoptosis effect than that caused by AuNP-1 with β-lapachone. This work suggests that AuNPs covered with cyclodextrin and tumor-targeting ligands may find useful applications for the development of nanoparticles with therapeutic and diagnostic modalities.

Graphical abstract: Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug

Supplementary files

Article information

Article type
Paper
Submitted
16 Sep 2008
Accepted
12 Jan 2009
First published
27 Feb 2009

J. Mater. Chem., 2009,19, 2310-2315

Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug

C. Park, H. Youn, H. Kim, T. Noh, Y. H. Kook, E. T. Oh, H. J. Park and C. Kim, J. Mater. Chem., 2009, 19, 2310 DOI: 10.1039/B816209C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements