Skip to main content
Log in

Starting and propagating apoptotic signals in UVB irradiated keratinocytes

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The ultraviolet (UV) B portion of the UV light has been recognized as the most prominent risk factor for the development of skin cancer, the most common malignancy in the Caucasian population. At the cellular level, UVB signal transduction regulates replicative arrest and DNA repair, gene expression and, when damage is beyond repair, apoptotic cell death, which is induced to protect the host against the accumulation of potentially mutagenic keratinocytes. An increasing body of evidence indicates that the UVB response in skin is a complex and multifaceted biological process. The UVB signal transduction originates at multiple intracellular sites, and the cross talk between dedicated molecular mediators acting within a complex signal network, determines whether the UVB damaged cell will survive, proliferate or die. However, very little is known about the original targets or direct chromophores that put in motion the UVB response in its main target: the keratinocyte. In this review we discuss the recent identification of signalling pathways linking apical UVB mediated damaging events with the induction of apoptosis. Understanding the molecular mechanisms that underlie the process of apoptotic cell death in UVB exposed keratinocytes, is of outmost importance to reveal how defects in apoptotic pathways can contribute to skin cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Matsumura and H. N. Ananthaswamy, Toxic effects of ultraviolet radiation on the skin, Toxicol. Appl. Pharmacol., 2004, 195, 298–308.

    Article  CAS  PubMed  Google Scholar 

  2. W. A. Bruls, H. Slaper, J. C. van der Leun and L. Berrens, Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths, Photochem. Photobiol., 1984, 40, 485–94.

    Article  CAS  PubMed  Google Scholar 

  3. R. Lavker and K. J. Kaidbey, The spectral dependence for UVA-induced cumulative damage in human skin., Invest Dermatol., 1997, 108, 17–21.

    Article  CAS  Google Scholar 

  4. D. I. Pattison and M. J. Davies, Actions of ultraviolet light on cellular structures, EXS, 2006, 96, 131–57.

    CAS  Google Scholar 

  5. J. Krutmann, The interaction of UVA and UVB wavebands with particular emphasis on signalling, Prog. Biophys. Mol. Biol., 2006, 92, 105–7.

    Article  CAS  PubMed  Google Scholar 

  6. H. S. Black, F. R. de Gruijl, P. D. Forbes, J. E. Cleaver, H. N. Ananthaswamy, E. C. de Fabo, S. E. Ullrich and R. M. Tyrrell, Photocarcinogenesis: an overview, J. Photochem. Photobiol., 1997, 40, 29–47.

    Article  CAS  Google Scholar 

  7. F. Trautinger, Mechanisms of photodamage of the skin and its functional consequences for skin ageing, Clin. Exp. Dermatol., 2001, 26, 573–7.

    Article  CAS  PubMed  Google Scholar 

  8. J. M. Sheehan and A. R. Young, The sunburn cell revisited: an update on mechanistic aspects, Photochem. Photobiol. Sci., 2002, 1, 365–77.

    Article  CAS  PubMed  Google Scholar 

  9. A. Van Laethem, S. Claerhout, M. Garmyn and P. Agostinis, The sunburn cell: regulation of death and survival of the keratinocyte, Int. J. Biochem. Cell Biol., 2005, 37, 1547–53.

    Article  PubMed  CAS  Google Scholar 

  10. H. Soehnge, A. Ouhtit and O. N. Ananthaswamy, Mechanisms of induction of skin cancer by UV radiation, Front. Biosci., 1997, 1, 538–51.

    Google Scholar 

  11. R. J. Berg, H. Rebel, G. T. van der Horst, H. J. van Kranen, L. H. Mullenders, W. A. van Vloten and F. R. de Gruijl, Impact of global genome repair versus transcription-coupled repair on ultraviolet carcinogenesis in hairless mice, Cancer Res., 2000, 60, 2858–63.

    CAS  PubMed  Google Scholar 

  12. C. S. Wu, C. C. Lan, M. H. Chiou and H. S. Yu, Basic fibroblast growth factor promotes melanocyte migration via increased expression of p125(FAK) on melanocytes, Acta Dermatol. Venereol., 2006, 86, 498–502.

    Article  CAS  Google Scholar 

  13. D. Fagot, D. Asselineau and F. Bernerd, Direct role of human dermal fibroblasts and indirect participation of epidermal keratinocytes in MMP-1 production after UV-B irradiation, Arch. Dermatol. Res., 2002, 293, 576–83.

    Article  CAS  PubMed  Google Scholar 

  14. D. J. Leffell, The scientific basis of skin cancer, J. Am. Acad. Dermatol., 2000, 42, 18–22.

    Article  CAS  PubMed  Google Scholar 

  15. T. M. Rünger and U. P. Kappes, Mechanisms of mutation formation with long-wave ultraviolet light (UVA), Photodermatol. Photoimmunol. Photomed., 2008, 24, 2–10.

    Article  PubMed  Google Scholar 

  16. D. Decraene, P. Agostinis, A. Pupe, P. de Haes and M. Garmyn, Acute response of human skin to solar radiation: regulation and function of the p53 protein, J. Photochem. Photobiol., 2001, 63, 78–83.

    Article  CAS  Google Scholar 

  17. M. Oren, Decision making by p53: life, death and cancer, Cell Death Differ., 2003, 10, 431–42.

    Article  CAS  PubMed  Google Scholar 

  18. A. Ziegler, A. S. Jonason, D. J. Leffell, J. A. Simon, H. W. Sharma, J. Kimmelman, L. Remington, T. Jacks and D. E. Brash, Sunburn and p53 in the onset of skin cancer, Nature, 1994, 372, 773–6.

    Article  CAS  PubMed  Google Scholar 

  19. L. Latonen and M. Laiho, Cellular UV damage responses-functions of tumor suppressor p53, Biochim. Biophys. Acta, 2005, 1755, 71–89.

    CAS  PubMed  Google Scholar 

  20. S. Jin, T. Tong, W. Fan, F. Fan, M. J. Antinore, X. Zhu, L. Mazzacurati, X. Li, K. L. Petrik, B. Rajasekaran, M. Wu and Q. Zhan, GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity, Oncogene, 2002, 21, 8696–704.

    Article  CAS  PubMed  Google Scholar 

  21. Y. Shiloh, ATM and related protein kinases: safeguarding genome integrity, Nature Rev. Cancer, 2003, 3, 155–168.

    Article  CAS  Google Scholar 

  22. L. D. Attardi and T. Jacks, The role of p53 in tumour suppression: lessons from mouse models, Cell. Mol. Life Sci., 1999, 55, 48–63.

    Article  CAS  PubMed  Google Scholar 

  23. W. Bruins, E. Zwart, L. D. Attardi, T. Iwakuma, E. M. Hoogervorst, R. B. Beems, B. Miranda, C. T. van Oostrom, J. van den Berg, G. J. van den Aardweg, G. Lozano, H. van Steeg, T. Jacks and A. de Vries, Increased sensitivity to UV radiation in mice with a p53 point mutation at Ser389, Mol. Cell. Biol., 2004, 24, 8884–8894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J. S. Reis-Filho, B. Torio, A. Albergaria and F. C. Schmitt, p63 expression in normal skin and usual cutaneous carcinomas, J. Cutan. Pathol., 2002, 29, 517–23.

    Article  PubMed  Google Scholar 

  25. M. Papoutsaki, F. Moretti, M. Lanza, B. Marinari, V. Sartorelli, L. Guerrini, S. Chimenti, M. Levrero and A. Costanzo, A p38-dependent pathway regulates DeltaNp63 DNA binding to p53-dependent promoters in UV-induced apoptosis of keratinocytes, Oncogene, 2005, 24, 6970–5.

    Article  CAS  PubMed  Google Scholar 

  26. G. Pellegrini, E. Dellambra, O. Golisano, E. Martinelli, I. Fantozzi, S. Bondanza, D. Ponzin, F. McKeon and M. De Luca, p63 identifies keratinocyte stem cells, Proc. Natl. Acad. Sci. USA, 2001, 98, 3156–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. J. Hildesheim, D. V. Bulavin, M. R. Anver, W. G. Alvord, M. C. Hollander, L. Vardanian and A. J. Fornace, Jr., Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53, Cancer Res., 2002, 62, 7305–7315.

    CAS  PubMed  Google Scholar 

  28. N. D. Marchenko, A. Zaika and U. M. Moll, Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling, J. Biol. Chem., 2000, 275, 16202–12.

    Article  CAS  PubMed  Google Scholar 

  29. J. E. Chipuk, T. Kuwana, L. Bouchier-Hayes, N. M. Droin, D. D. Newmeyer, M. Schuler and D. R. Green, Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis, Science, 2004, 303, 1010–4.

    Article  CAS  PubMed  Google Scholar 

  30. Z. Assefa, A. Vantieghem, M. Garmyn, W. Declercq, P. Vandenabeele, J. R. Vandenheede, R. Bouillon, W. Merlevede and P. Agostinis, p38 mitogen-activated protein kinase regulates a novel, caspase-independent pathway for the mitochondrial cytochrome c release in ultraviolet B radiation-induced apoptosis, J. Biol. Chem., 2000, 275, 21416–21.

    Article  CAS  PubMed  Google Scholar 

  31. K. H. Kraemer, Sunlight and skin cancer: another link revealed, Proc. Natl. Acad. Sci. USA, 1997, 94, 11–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. D. A. Norris, M. H. Middleton, K. Whang, M. Schleicher, T. McGovern, S. D. Bennion, K. David-Bajar, D. Davis and R. C. Duke, Human keratinocytes maintain reversible anti-apoptotic defenses in vivo and in vitro, Apoptosis, 1997, 2, 136–48.

    Article  CAS  PubMed  Google Scholar 

  33. V. Chaturvedi, J. Z. Qin, L. Stennett, D. Choubey and B. J. Nickoloff, Resistance to UV-induced apoptosis in human keratinocytes during accelerated senescence is associated with functional inactivation of p53, J. Cell Physiol., 2004, 198, 100–109.

    Article  CAS  PubMed  Google Scholar 

  34. A. Mandinova, K. Lefort, A. Tommasi di Vignano, W. Stonely, P. Ostano, G. Chiorino, H. Iwaki, J. Nakanishi and G. P. Dotto, The FoxO3a gene is a key negative target of canonical Notch signalling in the keratinocyte UVB response, EMBO J., 2008, 27, 1243–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. J. Z. Qin, P. Bacon, J. Panella, L. A. Sitailo, M. F. Denning and B. J. Nickoloff, Low-dose UV-radiation sensitizes keratinocytes to TRAIL-induced apoptosis, J. Cell Physiol., 2004, 200, 155–66.

    Article  CAS  PubMed  Google Scholar 

  36. D. Kulms and T. Schwarz, Molecular mechanisms involved in UV-induced apoptotic cell death, Skin Pharmacol. Appl. Skin Physiol., 2002, 15, 342–7.

    Article  CAS  PubMed  Google Scholar 

  37. B. Bang, R. Gniadecki, J. K. Larsen, O. Baadsgaard and L. Skov, In vivo UVB irradiation induces clustering of Fas (CD95) on human epidermal cells, Exp. Dermatol., 2003, 12, 791–8.

    Article  CAS  PubMed  Google Scholar 

  38. A. Gröne, Keratinocytes and cytokines, Vet. Immunol. Immunopathol., 2002, 88, 1–12.

    Article  PubMed  Google Scholar 

  39. R. L. Eckert, T. Efimova, S. R. Dashti, S. Balasubramanian, A. Deucher, J. F. Crish, M. Sturniolo and F. Bone, Keratinocyte survival, differentiation, and death: many roads lead to mitogen-activated protein kinase, J. Invest. Dermatol. Symp. Proc., 2002, 7, 36–40.

    Article  CAS  Google Scholar 

  40. S. Kondo, D. N. Sauder, T. Kono, K. A. Galley and R. C. McKenzie, Differential modulation of interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) in human epidermal keratinocytes by UVB, Exp. Dermatol., 1994, 3, 29–39.

    Article  CAS  PubMed  Google Scholar 

  41. Y. Ogura, F. S. Sutterwala and R. A. Flavell, The inflammasome: first line of the immune response to cell stress, Cell., 2006, 126, 659–62.

    Article  CAS  PubMed  Google Scholar 

  42. F. Martinon, K. Burns and J. Tschopp, The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta, Mol. Cell, 2002, 10, 417–26.

    Article  CAS  PubMed  Google Scholar 

  43. J. A. Kummer, R. Broekhuizen, H. Everett, L. Agostini, L. Kuijk, F. Martinon, R. van Bruggen and J. Tschopp, Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response, J. Histochem. Cytochem., 2007, 55, 443–52.

    Article  CAS  PubMed  Google Scholar 

  44. H. Watanabe, O. Gaide, V. Pétrilli, F. Martinon, E. Contassot, S. Roques, J. A. Kummer, J. Tschopp and L. E. French, Activation of the IL-1beta-processing inflammasome is involved in contact hypersensitivity, J. Invest. Dermatol., 2007, 127, 1956–63.

    Article  CAS  PubMed  Google Scholar 

  45. L. Feldmeyer, M. Keller, G. Niklaus, D. Hohl, S. Werner and H. D. Beer, The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes, Curr. Biol., 2007, 17, 1140–5.

    Article  CAS  PubMed  Google Scholar 

  46. D. Decraene, P. Agostinis, R. Bouillon, H. Degreef and M. Garmyn, Insulin-like growth factor-1-mediated AKT activation postpones the onset of ultraviolet B-induced apoptosis, providing more time for cyclobutane thymine dimer removal in primary human keratinocytes, J. Biol. Chem., 2002, 277, 32587–95.

    Article  CAS  PubMed  Google Scholar 

  47. F. Belleudi, L. Leone, L. Aimati, M. G. Stirparo, G. Cardinali, C. Marchese, L. Frati, M. Picardo and M. R. Torrisi, Endocytic pathways and biological effects induced by UVB-dependent or ligand-dependent activation of the keratinocyte growth factor receptor, FASEB J., 2006, 20, 395–7.

    Article  CAS  PubMed  Google Scholar 

  48. Y. Xu, J. J. Voorhees and G. J. Fisher, Epidermal growth factor receptor is a critical mediator of ultraviolet B irradiation-induced signal transduction in immortalized human keratinocyte HaCaT cells, Am. J. Pathol., 2006, 169, 823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. D. A. Lewis, S. A. Hurwitz and D. F. Spandau, UVB-induced apoptosis in normal human keratinocytes: role of the erbB receptor family, Exp. Cell Res., 2003, 284, 316–27.

    Article  CAS  PubMed  Google Scholar 

  50. H. Q. Wang, T. Quan, T. T. F. He, F. Franke, J. J. Voorhees and G. J. Fisher, Epidermal growth factor receptor-dependent, NF-kappaB-independent activation of the phosphatidylinositol 3-kinase/Akt pathway inhibits ultraviolet irradiation-induced caspases-3, -8, and −9 in human keratinocytes, J. Biol. Chem., 2003, 278, 45737–45.

    Article  CAS  PubMed  Google Scholar 

  51. M. Seo, M. J. Lee, J. H. Heo, Y. I. Lee, Y. Kim, S. Y. Kim, E. S. Lee and Y. S. Juhnn, G protein beta gamma subunits augment UVB-induced apoptosis by stimulating the release of soluble heparin binding EGF-like growth factor from human keratinocytes, J. Biol. Chem., 2007, 282, 24720–30.

    Article  CAS  PubMed  Google Scholar 

  52. E. Fritsche, C. Schäfer, C. Calles, T. Bernsmann, T. Bernshausen, M. Wurm, U. Hübenthal, J. E. Cline, H. Hajimiragha, P. Schroeder, L. O. Klotz, A. Rannug, P. Fürst, H. Hanenberg, J. Abel and J. Krutmann, Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation, Proc. Natl. Acad. Sci. USA, 2007, 104, 8851–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. P. Agostinis, M. Garmyn and A. Van Laethem, The aryl hydrocarbon receptor: An illuminating effector of the UVB response, Sci STKE, 2007, 403, pe49.

    Google Scholar 

  54. D. R. Bickers and M. Athar, Oxidative stress in the pathogenesis of skin disease, J. Invest. Dermatol., 2006, 126, 2565–75.

    Article  CAS  PubMed  Google Scholar 

  55. M. Ding, J. Li, S. S. Leonard, X. Shi, M. Costa, V. Castranova, V. Vallyathan and C. Huang, Differential role of hydrogen peroxide in UV-induced signal transduction, Mol. Cell. Biochem., 2002, 234–235, 81–90.

    Article  PubMed  Google Scholar 

  56. H. R. Rezvani, F. Mazurier, M. Cario-André, C. Pain, C. Ged, A. Taïeb and H. de Verneuil, Protective effects of catalase overexpression on UVB-induced apoptosis in normal human keratinocytes, J. Biol. Chem., 2006, 281, 17999–8007.

    Article  CAS  PubMed  Google Scholar 

  57. G. H. Jin, Y. Liu, S. Z. Jin, X. D. Liu and S. Z. Liu, UVB induced oxidative stress in human keratinocytes and protective effect of antioxidant agents, Radiat. Environ. Biophys., 2007, 46, 61–8.

    Article  CAS  PubMed  Google Scholar 

  58. Z. Assefa, M. Garmyn, A. Vantieghem, W. Declercq, P. Vandenabeele, J. R. Vandenheede and P. Agostinis, Ultraviolet B radiation-induced apoptosis in human keratinocytes: cytosolic activation of procaspase-8 and the role of Bcl-2, FEBS Lett., 2003, 540, 125–32.

    Article  CAS  PubMed  Google Scholar 

  59. D. E. Heck, A. M. Vetrano, T. M. Mariano and J. D. Laskin, UVB light stimulates production of reactive oxygen species: unexpected role for catalase, J. Biol. Chem., 2003, 278, 22432–6.

    Article  CAS  PubMed  Google Scholar 

  60. C. S. Sander, H. Chang, S. Salzmann, C. S. Müller, S. Ekanayake-Mudiyanselage, P. Elsner and J. J. Thiele, Photoaging is associated with protein oxidation in human skin in vivo, J. Invest. Dermatol., 2002, 118, 618–25.

    Article  CAS  PubMed  Google Scholar 

  61. E. Kvam and R. M. Tyrrell, Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation, Carcinogenesis, 1997, 18(12), 2379–84.

    Article  CAS  PubMed  Google Scholar 

  62. A. Van Laethem, K. Nys, S. Van Kelst, S. Claerhout, H. Ichijo, J. R. Vandenheede, M. Garmyn and P. Agostinis, Apoptosis signal regulating kinase-1 connects reactive oxygen species to p38 MAPK-induced mitochondrial apoptosis in UVB-irradiated human keratinocytes, Free Radical Biol. Med., 2006, 41, 1361–71.

    Article  CAS  Google Scholar 

  63. H. Wang and I. E. Kochevar, Involvement of UVB-induced reactive oxygen species in TGF-beta biosynthesis and activation in keratinocytes, Free Radic Biol. Med., 2005, 38, 890–7.

    Article  CAS  PubMed  Google Scholar 

  64. J. D. Lambeth, NOX enzymes and the biology of reactive oxygen, Nat. Rev. Immunol., 2004, 4, 181–9.

    Article  CAS  PubMed  Google Scholar 

  65. Z. Assefa, A. Van Laethem, M. Garmyn and P. Agostinis, Ultraviolet radiation-induced apoptosis in keratinocytes: on the role of cytosolic factors, Biochim. Biophys. Acta, 2005, 1755, 90–106.

    CAS  PubMed  Google Scholar 

  66. D. Decraene, K. Smaers, D. Gan, T. Mammone, M. Matsui, D. Maes, L. Declercq and M. Garmyn, A synthetic superoxide dismutase/catalase mimetic (EUK-134) inhibits membrane-damage-induced activation of mitogen-activated protein kinase pathways and reduces p53 accumulation in ultraviolet B-exposed primary human keratinocytes, J. Invest. Dermatol., 2004, 122, 484–91.

    Article  CAS  PubMed  Google Scholar 

  67. D. Peus, R. A. Vasa, A. Beyerle, A. Meves, C. Krautmacher and M. R. Pittelkow, UVB activates ERK1/2 and p38 signaling pathways via reactive oxygen species in cultured keratinocytes, J. Invest. Dermatol., 1999a, 112, 751–6.

    Article  CAS  PubMed  Google Scholar 

  68. F. Afaq, N. Ahmad and H. Mukhtar, Suppression of UVB-induced phosphorylation of mitogen-activated protein kinases and nuclear factor kappa B by green tea polyphenol in SKH-1 hairless mice, Oncogene, 2003, 22, 9254–64.

    Article  CAS  PubMed  Google Scholar 

  69. M. Nomura, A. Kaji, W. Y. Ma, S. Zhong, G. Liu, G. T. Bowden, K. I. Miyamoto and Z. Dong, Mitogen- and stress-activated protein kinase 1 mediates activation of Akt by ultraviolet B irradiation, J. Biol. Chem., 2001, 276, 25558–67.

    Article  CAS  PubMed  Google Scholar 

  70. A. M. Bode and Z. Dong, Mitogen-activated protein kinase activation in UV-induced signal transduction, Sci STKE, 2003, 28.

  71. A. Van Laethem, S. Van Kelst, S. Lippens, W. Declercq, P. Vandenabeele, S. Janssens, J. R. Vandenheede, M. Garmyn and P. Agostinis, Activation of p38 MAPK is required for Bax translocation to mitochondria, cytochrome c release and apoptosis induced by UVB irradiation in human keratinocytes, FASEB J., 2004, 18, 1946–8.

    Article  PubMed  CAS  Google Scholar 

  72. S. Gross, A. Knebel, T. Tenev, A. Neininger, M. Gaestel, P. Herrlich and F. D. Böhmer, Inactivation of protein-tyrosine phosphatases as mechanism of UV-induced signal transduction, J. Biol. Chem., 1999, 274, 26378–86.

    Article  CAS  PubMed  Google Scholar 

  73. J. Matsukawa, A. Matsuzawa, K. Takeda and H. Ichijo, The ASK1-MAP kinase cascades in mammalian stress response, J. Biochem., 2004, 136, 261–5.

    Article  CAS  PubMed  Google Scholar 

  74. H. R. Rezvani, S. Dedieu, S. North, F. Belloc, R. Rossignol, T. Letellier, H. de Verneuil, A. Taïeb and F. Mazurier, Hypoxia-inducible factor-1alpha, a key factor in the keratinocyte response to UVB exposure, J. Biol. Chem., 2007, 282, 16413–22.

    Article  CAS  PubMed  Google Scholar 

  75. C. Saliou, M. Kitazawa, L. McLaughlin, J. P. Yang, J. K. Lodge, T. Tetsuka, K. Iwasaki, J. Cillard, T. Okamoto and L. Packer, Antioxidants modulate acute solar ultraviolet radiation-induced NF-kappa-B activation in a human keratinocyte cell line, Free Radical Biol. Med., 1999, 26, 174–83.

    Article  CAS  Google Scholar 

  76. D. A. Lewis and D. F. Spandau, UVB-induced activation of NF-kappaB is regulated by the IGF-1R and dependent on p38 MAPK, J. Invest. Dermatol., 2008, 128, 1022–9.

    Article  CAS  PubMed  Google Scholar 

  77. K. Otkjaer, K. Kragballe, C. Johansen, A. T. Funding, H. Just, U. B. Jensen, L. G. Sørensen, P. L. Nørby, J. T. Clausen and L. Iversen, IL-20 gene expression is induced by IL-1beta through mitogen-activated protein kinase and NF-kappaB-dependent mechanisms, J. Invest. Dermatol., 2007, 127, 1326–36.

    Article  CAS  PubMed  Google Scholar 

  78. M. Karin and Y. Ben-Neriah, Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity, Annu. Rev. Immunol., 2000, 18, 621–63.

    Article  CAS  PubMed  Google Scholar 

  79. P. Herrlich, M. Karin and C. Weiss, Supreme EnLIGHTenment: damage recognition and signaling in the mammalian UV response, Mol. Cell, 2008, 29, 279–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. J. Z. Qin, V. Chaturvedi, M. F. Denning, D. Choubey, M. O. Diaz and B. J. Nickoloff, Role of NF-kappaB in the apoptotic-resistant phenotype of keratinocytes, J. Biol. Chem., 1999, 274, 37957–64.

    Article  CAS  PubMed  Google Scholar 

  81. M. van Hogerlinden, B. L. Rozell, L. Ahrlund-Richter and R. Toftgård, Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-kappaB signaling, Cancer Res, 1999, 59, 3299–303.

    PubMed  Google Scholar 

  82. D. A. Lewis and D. F. Spandau, UVB activation of NF-kappaB in normal human keratinocytes occurs via a unique mechanism, Arch. Dermatol. Res., 2007, 299, 93–101.

    Article  CAS  PubMed  Google Scholar 

  83. S. Grundström, P. Anderson, P. Scheipers and A. Sundstedt, Bcl-3 and NFkappaB p50-p50 homodimers act as transcriptional repressors in tolerant CD4+ T cells, J. Biol. Chem., 2004, 279, 8460–8.

    Article  PubMed  CAS  Google Scholar 

  84. S. K. Mantena and S. K. Katiyar, Grape seed proanthocyanidins inhibit UV-radiation-induced oxidative stress and activation of MAPK and NF-kappaB signaling in human epidermal keratinocytes, Free Radical Biol. Med., 2006, 40, 1603–14.

    Article  CAS  Google Scholar 

  85. B. J. Nickoloff, J. Z. Qin, V. Chaturvedi, P. Bacon, J. Panella and M. F. Denning, Life and death signaling pathways contributing to skin cancer, J. Invest. Dermatol. Symp. Proc., 2002, 7, 27–35.

    Article  CAS  Google Scholar 

  86. L. A. Sitailo, S. S. Tibudan and M. F. Denning, Activation of caspase-9 is required for UV-induced apoptosis of human keratinocytes, J. Biol. Chem., 2002, 277, 19346–52.

    Article  CAS  PubMed  Google Scholar 

  87. R. Takasawa and S. Tanuma, Sustained release of Smac/DIABLO from mitochondria commits to undergo UVB-induced apoptosis, Apoptosis, 2003, 8, 291–9.

    Article  CAS  PubMed  Google Scholar 

  88. L. A. Sitailo, S. S. Tibudan and M. F. Denning, Bax activation and induction of apoptosis in human keratinocytes by the protein kinase C delta catalytic domain, J. Invest. Dermatol., 2004, 123, 434–443.

    Article  CAS  PubMed  Google Scholar 

  89. M. F. Denning, Y. Wang, S. Tibudan, S. Alkan, B. J. Nickoloff and J. Z. Qin, Caspase activation and disruption of mitochondrial membrane potential during UV radiation-induced apoptosis of human keratinocytes requires activation of protein kinase C, Cell Death Differ., 2002, 9, 40–52.

    Article  CAS  PubMed  Google Scholar 

  90. D. Grossman, J. M. McNiff, F. Li and D. C. Altieri, Expression of the apoptosis inhibitor, survivin, in nonmelanoma skin cancer and gene targeting in a keratinocyte cell line, Lab Invest., 1999, 79, 1121–6.

    CAS  PubMed  Google Scholar 

  91. D. Grossman, P. J. Kim, O. P. Blanc-Brude, D. E. Brash, S. Tognin, P. C. Marchisio and D. C. Altieri, Transgenic expression of survivin in keratinocytes counteracts UVB-induced apoptosis and cooperates with loss of p53, J. Clin. Invest., 2001, 108, 991–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. D. Kulms and T. Schwarz, Independent contribution of three different pathways to ultraviolet-B-induced apoptosis, Biochem. Pharmacol., 2002, 64, 837–41.

    Article  CAS  PubMed  Google Scholar 

  93. D. V. Bulavin, S. Saito, M. C. Hollander, K. Sakaguchi, C. W. Anderson, E. Appella and A. J. Fornace, Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation, EMBO J., 1999, 18, 6845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Q. B. She, N. Chen and Z. Dong, ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation, J. Biol. Chem., 2000, 275, 20444–9.

    Article  CAS  PubMed  Google Scholar 

  95. D. A. Lewis, Q. Yi, J. B. Travers and D. F. Spandau, UVB-induced Senescence in Human Keratinocytes Requires a Functional Insulin-like Growth Factor-1 Receptor and p53, Mol Biol Cell., 2008, 19, 1346–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. W. Englaro, B. Derijard, J. P. Ortonne and R. Ballotti, Solar ultraviolet light activates extracellular signal-regulated kinases and the ternary complex factor in human normal keratinocytes, Oncogene, 1998, 16, 661–4.

    Article  CAS  PubMed  Google Scholar 

  97. T. W. Fischer, M. A. Zmijewski, J. Wortsman and A. Slominski, Melatonin maintains mitochondrial membrane potential and attenuates activation of initiator (casp-9) and effector caspases (casp-3/casp-7) and PARP in UVR-exposed HaCaT keratinocytes, J. Pineal Res., 2008, 44, 397–407.

    Article  CAS  PubMed  Google Scholar 

  98. L. Verschooten, S. Claerhout, A. Van Laethem, P. Agostinis and M. Garmyn, New strategies of photoprotection, Photochem. Photobiol., 2006, 82, 1016–23.

    Article  CAS  PubMed  Google Scholar 

  99. C. Denicourt and S. F. Dowdy, Medicine. Targeting apoptotic pathways in cancer cells, Science, 2004, 305, 1411–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Laethem, A., Garmyn, M. & Agostinis, P. Starting and propagating apoptotic signals in UVB irradiated keratinocytes. Photochem Photobiol Sci 8, 299–308 (2009). https://doi.org/10.1039/b813346h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b813346h